On the Linearization of Scaffolds sharing Repeated Contigs

Mathias Weller, Annie Chateau, Tom Davot, Rodolphe Giroudeau

17 novembre 2017

1 of 40

Э

ヘロア 人間 アメヨア 人間 アー

DISCLAIMER

Be careful : An NP-complete problem could hide another one. This talk is about the **third** one you'll meet.

INTRODUCTION

Sequencing is a technology used to infer genomic information out of DNA material.

- it produces short words, called *reads*, which have to be *assembled* to (try to) reconstruct the whole genomic sequence.
- Assembly can be modelized as an NP-complete problem (Shortest Superstring)¹

ヘロア 人間 アメヨア 人間 アー

^{1.} Do you follow? This is the first problem.

INTRODUCTION

Strategies for assembly :

• Greedy

- Overlap-Layout-Consensus
- De Bruijn graphs

INTRODUCTION

Results : sets of *contigs* of various sizes, disconnected

Far from the whole sequence...

Assembly doesn't take into account some pairing information on the reads.

 \Rightarrow we need an additional step to use these information and (try to) produce chromosome-long sequences.

イロト イポト イヨト イヨト

INTRODUCTION

Why?

- Observe genome-scale phenomena
- Improve reference genomes quality
- Lot of genomes have a "draft" status in databases

ヘロア 人間 アメヨア 人間 アー

INTRODUCTION

https://gold.jgi.doe.gov/statistics

イロト イポト イヨト イヨト 二日

THE SCAFFOLDING PROBLEM²

To determine relative order and orientation of contigs, we need :

- Informations between contigs
 - pairing data (common, easy, cheap)
 - phylogenetic data (needs well assembled close species)
 - long reads (full of errors, expensive)
 - ▶ ...
- A weight on these information
 - number of pairs of reads
 - probabilistic measure
 - coverage depth
 - ▶ ...

イロト イポト イヨト イヨト

The Scaffolding Problem

Data are modeled as a graph G = (V, E):

- Vertices : contigs extremities
- Edges :
 - between both extremities of a given contig (contig edge)
 - between extremities of distinct contigs (inter-contigs edge)

Weight function : $w : E \to \mathbb{R}$.

イロト イヨト イヨト イヨト

The Scaffolding Problem

Graph with 2*n* vertices and a perfect matching (contig edges)

We use additionnal parameters to model the desired chromosomic structure : σ_p linear chromosomes and σ_c circular chromosomes

WHAT ABOUT "SHARED CONTIGS"?

3

ヘロト 人間 とくほとくほと

WHAT ABOUT "SHARED CONTIGS"?

THE SCAFFOLDING PROBLEM WITH MULTIPLICITIES

Input : $G = (V, E), w : E \to \mathbb{N}, M^*$ perfect matching, $\sigma_p, \sigma_c, k \in \mathbb{N}, m : E \to \mathbb{N}$

Query : Does it exist a set *S* of σ_p alternating open walks and σ_c alternating closed walks covering *G* such that $w(S) \ge k$ and satisfying the maximal multiplicity constraint?

イロト イポト イヨト イヨト

THE SCAFFOLDING PROBLEM WITH MULTIPLICITIES

Guess what?³

3. If you read footnotes, you already know

THE SCAFFOLDING PROBLEM WITH MULTIPLICITIES

Guess what?³

It is NP-complete!

3. If you read footnotes, you already know ding

THAT'S ANOTHER STORY BUT...

We have algorithms and exact methods to solve this problem efficiently on real instances.

It scales : 1h30 to scaffold a mosquitoe genome...

Take repeats into account...

... everything seems to be perfect, but ...

イロト イヨト イヨト イヨト

SOLUTION GRAPH

Juste a little problem : the solution appears as a graph, not as a collection of cycles and paths. Multiples edges are not "attributed" to a particular path

LINEARIZATION OF SOLUTION GRAPH

Biologists like linear (or circular) genomes.

First solution : Convince biologists that a solution graph is cool.

It may take a while and lots of efforts...

イロト イヨト イヨト イヨト

Second solution : Transform the graph into sequences, without creating chimera

NOTATIONS

Definition

Let *p* be an alternating *u*-*v*-path in a solution graph. If all edges of *p* have the same multiplicity μ (that is, $m(e) = \mu$ for all $e \in p$), then *p* is called μ -*uniform* (or simply *uniform* if μ is unknown). Further, if *p* is μ -uniform and each of *u* and *v* is incident with a non-matching edge of multiplicity strictly less than μ , then *p* is called "ambiguous".

ヘロア 人間 アメヨア 人間 アー

NOTATIONS

Ambiguous path :

THE IDEAL CASE

Theorem Let *G* be a solution graph. Then, *G* is made up of a unique multiset of alternating walks if and only if *G* does not contain ambiguous paths.

ヘロト 人間 とくほ とくほとう

Ignore. Chose an arbitrary multiset of walks making up *G*. Weight is preserved, but risk to produce a chimeric sequence.

Ignore. Chose an arbitrary multiset of walks making up *G*. Weight is preserved, but risk to produce a chimeric sequence.

Clever. Chose walks that optimize some global criterion (i.e. N50). Again, risk to produce chimeric sequences.

イロト イヨト イヨト イヨト

- Ignore. Chose an arbitrary multiset of walks making up *G*. Weight is preserved, but risk to produce a chimeric sequence.
- Clever. Chose walks that optimize some global criterion (i.e. N50). Again, risk to produce chimeric sequences.
- Brutal. Isolate ambiguous paths by removing all non-matching edges incident to their extremities. Weight could drastically be lowered.

イロト イポト イヨト イヨト

- Ignore. Chose an arbitrary multiset of walks making up *G*. Weight is preserved, but risk to produce a chimeric sequence.
- Clever. Chose walks that optimize some global criterion (i.e. N50). Again, risk to produce chimeric sequences.
- Brutal. Isolate ambiguous paths by removing all non-matching edges incident to their extremities. Weight could drastically be lowered.
- Semi-brutal. Choose a proper set of endpoints of ambiguous path and remove all non-matching edges incident to it. Optimize a criteria.

イロト イポト イヨト イヨト 二日

- Ignore. Chose an arbitrary multiset of walks making up *G*. Weight is preserved, but risk to produce a chimeric sequence.
- Clever. Chose walks that optimize some global criterion (i.e. N50). Again, risk to produce chimeric sequences.
- Brutal. Isolate ambiguous paths by removing all non-matching edges incident to their extremities. Weight could drastically be lowered.
- Semi-brutal. Choose a proper set of endpoints of ambiguous path and remove all non-matching edges incident to it. Optimize a criteria.

イロト イポト イヨト イヨト 二日

SEMI-BRUTAL CUT⁴

Input : a solution graph (G, M^*, w, m) and some $k \in \mathbb{N}$

Query : Is there a set *X* of extremities of ambiguous paths in *G* such that removing all non-contig edges incident to vertices of *X* destroys all ambiguous paths and the score of *X* is at most *k*?

4. Here it is!

SCORING FUNCTION FOR SBC

Cut score. Pay one per side of an ambiguous path that is cut : score(X) := |X|.

Path score. Pay one for each multiplicity that is cut : $score(X) := \sum \{m(uv) \mid uv \in E \setminus M^* \land uv \cap X \neq \emptyset\}.$

Weight score. Pay the total cost of edges that are cut : $score(X) := \sum \{m(uv) \cdot w(uv) \mid uv \in E \setminus M^* \land uv \cap X \neq \emptyset \}.$

イロト イポト イヨト イヨト 二日

COMPLEXITY OF SBC

Linearizatio

29 of 40

COMPLEXITY

Theorem

It is NP-hard to decide whether all ambiguous paths in a solution graph can be destroyed by removing the non-matching edges incident to at most k endpoints.

Theorem It is \mathcal{NP} -hard to decide whether a solution graph without ambiguous paths can be obtained by removing at most k non-matching edges.

ヘロト 人間 とくほ とくほとう

(IDEA OF) PROOFS

For Cut-Score : reduction from Vertex Cover

Corollary

SBC with cut-score cannot be solved in $2^{o(n)}$ time unless ETH fails, and cannot be approximated within a ratio of 1.3606 (resp. better than factor 2) unless $\mathcal{P} = \mathcal{NP}$ (resp. UGC fails).

イロト イヨト イヨト イヨト

(IDEA OF) PROOFS

- For Path-Score : reduction from Transitivity Deletion
- **Input** :A triangle-free directed acyclic graph (V, A) and $k \ge 0$.
- **Question :**Is there an $A' \subseteq A$ with $|A'| \leq k$ and $(V, A \setminus A')$ is transitive?

For Weight-Score : Path-Score is a special case of Weight-Score

イロト イポト イヨト イヨト

POLYNOMIAL CASES

Rule

Let $uv \in M^*$ be a contig edge that does not occur in ambiguous paths and let u and v have degree at least two. Then, remove uv, add new vertices u' and v' and add the contig edges uv' and vu' with multiplicity m(uv).

POLYNOMIAL CASES

Trees : dynamic programming

c(x) = cost of a solution below x in which all non-contigsincident with x are cut

 $\bar{c}(x) = \cos t$ of any other solution below *x*.

If *x* is a leaf of *G*, $c(x) = \overline{c}(x) = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

POLYNOMIAL CASES

POLYNOMIAL CASES

Max degree two : collection of cycles and paths.

ILP formulation yields totally unimodular matrices

Γ1	1	0	0	0	0	0	0	ך 0
0	0	1	1	0	0	0	0	0
0	0	0	0	1	1	0	0	0
-1	0	0	0	0	0	1	0	0
0	0	0	-1	0	0	1	0	0
0	-1	0	0	0	0	0	1	0
0	0	0	0	-1	0	0	1	0
0	0	-1	0	0	0	0	0	1
0	0	0	0	0	-1	0	0	1

TOWARDS THE FRONTIER

Theorem The problem SBC for Cut-Score is \mathcal{NP} -complete, even if the graph is bipartite, planar, has maximum degree three and has its multiplicities in the set $\{1,2\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

TOWARDS THE FRONTIER

Idea of proof : reduction from 3-SAT

TOWARDS THE FRONTIER

CONCLUSION

There is a lot of work left :

- Approximation
- Define and test heuristics
- Test ILP
- Lower bounds of complexity

Э

・ロト ・ 同ト ・ ヨト ・ ヨト