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DISCLAIMER

Be careful : An NP-complete problem could hide another one.
This talk is about the third one you’ll meet.
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INTRODUCTION

Sequencing is a technology used to infer genomic information
out of DNA material.

it produces short words, called reads, which have to be
assembled to (try to) reconstruct the whole genomic
sequence.

Assembly can be modelized as an NP-complete problem
(Shortest Superstring) 1

1. Do you follow ? This is the first problem.
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INTRODUCTION

Strategies for assembly :

Greedy

Overlap-Layout-Consensus

De Bruijn graphs
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INTRODUCTION

Results : sets of contigs of various sizes, disconnected

Far from the whole sequence. . .

Assembly doesn’t take into account some pairing information
on the reads.

⇒we need an additional step to use these information and (try
to) produce chromosome-long sequences.
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INTRODUCTION

Why?

Observe genome-scale phenomena

Improve reference genomes quality

Lot of genomes have a ”draft” status in databases
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INTRODUCTION

https://gold.jgi.doe.gov/statistics
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THE SCAFFOLDING PROBLEM 2

To determine relative order and orientation of contigs, we
need :

Informations between contigs
I pairing data (common, easy, cheap)
I phylogenetic data (needs well assembled close species)
I long reads (full of errors, expensive)
I . . .

A weight on these information
I number of pairs of reads
I probabilistic measure
I coverage depth
I . . .

2. yes, this is the second one, be patient
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THE SCAFFOLDING PROBLEM

Data are modeled as a graph G = (V,E) :

Vertices : contigs extremities
Edges :

I between both extremities of a given contig (contig edge)
I between extremities of distinct contigs (inter-contigs edge)

Weight function : w : E→ R.
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THE SCAFFOLDING PROBLEM

3

1
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Graph with 2n vertices and a perfect matching (contig edges)

We use additionnal parameters to model the desired
chromosomic structure : σp linear chromosomes and σc circular
chromosomes
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WHAT ABOUT ”SHARED CONTIGS” ?
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WHAT ABOUT ”SHARED CONTIGS” ?
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THE SCAFFOLDING PROBLEM WITH MULTIPLICITIES

Input : G = (V,E), w : E→ N, M∗ perfect matching,
σp, σc, k ∈ N, m : E→ N

Query : Does it exist a set S of σp alternating open walks and σc
alternating closed walks covering G such that w(S) ≥ k and
satisfying the maximal mutliplicity constraint?
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THE SCAFFOLDING PROBLEM WITH MULTIPLICITIES

Guess what? 3

3. If you read footnotes, you already know
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THE SCAFFOLDING PROBLEM WITH MULTIPLICITIES

Guess what? 3

It is NP-complete !

3. If you read footnotes, you already know
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THAT’S ANOTHER STORY BUT. . .

We have algorithms and exact methods to solve this problem
efficiently on real instances.

It scales : 1h30 to scaffold a mosquitoe genome. . .

Take repeats into account. . .

. . . everything seems to be perfect, but . . .
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SOLUTION GRAPH

Juste a little problem : the solution appears as a graph, not as a
collection of cycles and paths. Multiples edges are not
”attributed” to a particular path

a

b

c

d

e f g h

i

j

k

l

Scaffolding 17 of 40



Introduction Scaffolding Linearization

LINEARIZATION OF SOLUTION GRAPH

Biologists like linear (or circular) genomes.

First solution : Convince biologists that a solution graph is
cool.

It may take a while and lots of efforts. . .

Second solution : Transform the graph into sequences, without
creating chimera
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NOTATIONS

Definition
Let p be an alternating u-v-path in a solution graph. If all edges
of p have the same multiplicity µ (that is, m(e) = µ for all e ∈ p),
then p is called µ-uniform (or simply uniform if µ is unknown).
Further, if p is µ-uniform and each of u and v is incident with a
non-matching edge of multiplicity strictly less than µ, then p is
called “ambiguous”.
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NOTATIONS

Ambiguous path :

x y3 2 2 1 3 3 5 5 71

2 1 2 1
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THE IDEAL CASE

Theorem
Let G be a solution graph. Then, G is made up of a unique multiset of
alternating walks if and only if G does not contain ambiguous paths.
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STRATEGIES TO GET RID OF AMBIGUOUS PATHS ?

Ignore. Chose an arbitrary multiset of walks making up G.
Weight is preserved, but risk to produce a
chimeric sequence.

Clever. Chose walks that optimize some global criterion
(i.e. N50). Again, risk to produce chimeric
sequences.

Brutal. Isolate ambiguous paths by removing all
non-matching edges incident to their extremities.
Weight could drastically be lowered.

Semi-brutal. Choose a proper set of endpoints of ambiguous
path and remove all non-matching edges incident
to it. Optimize a criteria.
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SEMI-BRUTAL CUT 4

Input : a solution graph (G,M∗,w,m) and some k ∈ N

Query : Is there a set X of extremities of ambiguous paths in G
such that removing all non-contig edges incident to vertices of
X destroys all ambiguous paths and the score of X is at most k ?

4. Here it is !
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SCORING FUNCTION FOR SBC

Cut score. Pay one per side of an ambiguous path that is cut :
score(X) := |X|.

Path score. Pay one for each multiplicity that is cut :
score(X) :=

∑
{m(uv) | uv ∈ E \M∗ ∧ uv ∩ X 6= ∅}.

Weight score. Pay the total cost of edges that are cut :
score(X) :=

∑
{m(uv) · w(uv) | uv ∈

E \M∗ ∧ uv ∩ X 6= ∅}.
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COMPLEXITY OF SBC
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COMPLEXITY

Theorem
It is NP-hard to decide whether all ambiguous paths in a solution
graph can be destroyed by removing the non-matching edges incident
to at most k endpoints.

Theorem
It is NP-hard to decide whether a solution graph without ambiguous
paths can be obtained by removing at most k non-matching edges.

Linearization 30 of 40



Introduction Scaffolding Linearization

(IDEA OF) PROOFS

For Cut-Score : reduction from Vertex Cover

a

b

c

d ⇒
a3 a2 a1 a

b b1 b2 b3

c c1 c2 c3

d d1 d2 d3
1 5

16

15

16

1

1

1

1

Corollary
SBC with cut-score cannot be solved in 2o(n) time unless ETH fails,
and cannot be approximated within a ratio of 1.3606 (resp. better
than factor 2) unless P = NP (resp. UGC fails).
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(IDEA OF) PROOFS

For Path-Score : reduction from Transitivity Deletion

Input :A triangle-free directed acyclic graph (V,A) and k ≥ 0.

Question :Is there an A′ ⊆ A with |A′| ≤ k and (V,A \ A′) is
transitive?

⇒ 4

3

4

31

1

1

For Weight-Score : Path-Score is a special case of Weight-Score
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POLYNOMIAL CASES

Rule
Let uv ∈M∗ be a contig edge that does not occur in ambiguous paths
and let u and v have degree at least two. Then, remove uv, add new
vertices u′ and v′ and add the contig edges uv′ and vu′ with
multiplicity m(uv).

u v

3 2 1

1
⇒ u u′ v′ v

3 2 2 1

1
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POLYNOMIAL CASES

Trees : dynamic programming

c(x) = cost of a solution below x in which all non-contigs
incident with x are cut

c̄(x) = cost of any other solution below x.

If x is a leaf of G, c(x) = c̄(x) = 0.

For any non-leaf x, we set
c(x) =

∑
y∈Children(x)

min(c̄(y), c(y)) +
∑

y∈Children(x)\{M∗(x)}

wxy

c̄(x) =

{
c(M∗(x)) if M∗(x) is belowx
0 otherwise

+
∑

y∈Children(x)\{M∗(x)}

min(c̄(y), c(y) + wxy)
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POLYNOMIAL CASES
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POLYNOMIAL CASES

Max degree two : collection of cycles and paths.

ILP formulation yields totally unimodular matrices



1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
−1 0 0 0 0 0 1 0 0
0 0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 0 1 0
0 0 0 0 −1 0 0 1 0
0 0 −1 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 1


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TOWARDS THE FRONTIER

Theorem
The problem SBC for Cut-Score is NP-complete, even if the graph is
bipartite, planar, has maximum degree three and has its multiplicities
in the set {1, 2}.
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TOWARDS THE FRONTIER

Idea of proof : reduction from 3-SAT
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TOWARDS THE FRONTIER
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CONCLUSION

There is a lot of work left :

Approximation

Define and test heuristics

Test ILP

Lower bounds of complexity
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