Dynamic Monopolies and Vaccination

Lucia Penso

Universität Ulm
Dynamic Monopolies and Vaccination

Lucia Penso

Universität Ulm

Joint with Bessy, Dourado, Ehard, Rautenbach
Dynamic Monopolies

Informal Definition

Dynamic monopolies are a simple graph-theoretical model for various types of viral processes in networks. Examples for things that can spread include opinions, computer viruses, diseases, products, habits, ...
Dynamic Monopolies

Informal Definition

Dynamic monopolies are a simple graph-theoretical model for various types of viral processes in networks. Examples for things that can spread include opinions, computer viruses, diseases, products, habits, etc.
Informal Definition

Dynamic monopolies are a simple graph-theoretical model for various types of viral processes in networks.
Dynamic Monopolies

Informal Definition

Dynamic monopolies are a simple graph-theoretical model for various types of viral processes in networks.

...examples for things that can spread...

- opinions,
- computer viruses,
- diseases,
- products,
- habits,
- ...
Dynamic Monopolies

(picture taken from www.quantamagazine.org)
Dynamic Monopolies

(picture taken from www.quantamagazine.org)
Dynamic Monopolies

Let G be a graph.

Let $\tau: V(G) \to \mathbb{Z}$ be a threshold function.

Let $D \subseteq V(G)$.

The hull $H(G, \tau)(D)$ of D in (G, τ) is obtained as follows:

$H \leftarrow D$;

while $|N_G(u) \cap H| \geq \tau(u)$ for some $u \in V(G) \setminus H$ do

$H \leftarrow H \cup \{u\}$;

end

$H(G, \tau)(D) \leftarrow H$;

return $H(G, \tau)(D)$;
Dynamic Monopolies

Let G be a graph.
Let $\tau : V(G) \rightarrow \mathbb{Z}$ be a threshold function.
Dynamic Monopolies

Let G be a graph.
Let $\tau : V(G) \to \mathbb{Z}$ be a threshold function.
Let $D \subseteq V(G)$.

Dynamic Monopolies

Let G be a graph.
Let $\tau : V(G) \rightarrow \mathbb{Z}$ be a threshold function.
Let $D \subseteq V(G)$.

The hull $H_{(G, \tau)}(D)$ of D in (G, τ) is obtained as follows:
Dynamic Monopolies

Let G be a graph.
Let $\tau : V(G) \rightarrow \mathbb{Z}$ be a threshold function.
Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G, τ) is obtained as follows:

$H \leftarrow D;$
Dynamic Monopolies

Let G be a graph.
Let $\tau : V(G) \to \mathbb{Z}$ be a threshold function.
Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G, τ) is obtained as follows:

\[
H \leftarrow D;
\textbf{while } |N_G(u) \cap H| \geq \tau(u) \text{ for some } u \in V(G) \setminus H
\]
Dynamic Monopolies

Let G be a graph.
Let $\tau : V(G) \to \mathbb{Z}$ be a threshold function.
Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G, τ) is obtained as follows:

$H \leftarrow D;$

while $|N_G(u) \cap H| \geq \tau(u)$ for some $u \in V(G) \setminus H$ do

$H \leftarrow H \cup \{u\};$

$H_{(G,\tau)}(D) \leftarrow H;$

return $H_{(G,\tau)}(D)$;
Dynamic Monopolies

Let G be a graph.
Let $\tau : V(G) \rightarrow \mathbb{Z}$ be a threshold function.
Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G, τ) is obtained as follows:

\begin{align*}
H & \leftarrow D; \\
\textbf{while } |N_G(u) \cap H| \geq \tau(u) \text{ for some } u \in V(G) \setminus H \text{ do} \\
& \quad H \leftarrow H \cup \{u\}; \\
\textbf{end} \\
H_{(G,\tau)}(D) & \leftarrow H;
\end{align*}
Dynamic Monopolies

Let G be a graph.
Let $\tau: V(G) \to \mathbb{Z}$ be a threshold function.
Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G,τ) is obtained as follows:

$$H \gets D;$$

while $|N_G(u) \cap H| \geq \tau(u)$ for some $u \in V(G) \setminus H$
do
$$H \gets H \cup \{u\};$$
end

$H_{(G,\tau)}(D) \gets H;$

return $H_{(G,\tau)}(D);$
Dynamic Monopolies

Definition

\[\text{dyn}(G, \tau) = \min \{ |D| : D \subseteq V(G) : H(G, \tau)(D) = V(G) \} \]

\[\text{dyn}(G, 0) = 0 \]

\[\text{dyn}(G, 1) = \text{number of components of } G \]

\[\text{dyn}(G, d_G) = \text{minimum order of a vertex cover of } G \]

\[\text{dyn}(G, d_G - 1) = \text{minimum order of a feedback vertex set of } G \]

\[D \text{ is a dynamic monopoly of } (G, \tau) \leftrightarrow V(G) \setminus D \text{ is a } (d_G - \tau)\text{-degenerate set in } G. \]
Dynamic Monopolies

Definition

\[D \subseteq V(G) : H_{(G,\tau)}(D) = V(G) \]

\(D \) is a dynamic monopoly of \((G, \tau)\)
Dynamic Monopolies

Definition

$$\text{dyn}(G, \tau) = \min \left\{ |D| : D \subseteq V(G) : H_{(G,\tau)}(D) = V(G) \right\}$$

D is a dynamic monopoly of (G, τ)

- $\text{dyn}(G, 0) = 0$
- $\text{dyn}(G, 1) = \text{number of components of } G$
- $\text{dyn}(G, d_G) = \text{minimum order of a vertex cover of } G$
- $\text{dyn}(G, d_G - 1) = \text{minimum order of a feedback vertex set of } G$
Dynamic Monopolies

Definition

\[\text{dyn}(G, \tau) = \min \left\{ |D| : \text{D is a dynamic monopoly of } (G, \tau) \right\} \]

\[\text{dyn}(G, 0) = 0 \]

\[\text{dyn}(G, 1) = \text{number of components of } G \]

\[\text{dyn}(G, d_G) = \text{minimum order of a vertex cover of } G \]

\[\text{dyn}(G, d_G - 1) = \text{minimum order of a feedback vertex set of } G \]
Dynamic Monopolies

Definition

\[
dyn(G, \tau) = \min \left\{ |D| : D \subseteq V(G) : H_{(G,\tau)}(D) = V(G) \right\}
\]

- \(dyn(G, 0) \)

- \(dyn(G, 1) = \) number of components of \(G \).

- \(dyn(G, d_G) = \) minimum order of a vertex cover of \(G \).

- \(dyn(G, d_G - 1) = \) minimum order of a feedback vertex set of \(G \).
Dynamic Monopolies

Definition

\[\text{dyn}(G, \tau) = \min \left\{ |D| : \left. D \subseteq V(G) : H_{(G,\tau)}(D) = V(G) \right\} \]

\[D \text{ is a dynamic monopoly of } (G, \tau) \]

- \(\text{dyn}(G, 0) = 0. \)
Dynamic Monopolies

Definition

\[\text{dyn}(G, \tau) = \min \left\{ |D| : D \subseteq V(G) : H_{(G,\tau)}(D) = V(G) \right\} \]

\(D \) is a dynamic monopoly of \((G, \tau)\)

- \(\text{dyn}(G, 0) = 0 \).
- \(\text{dyn}(G, 1) \)
Dynamic Monopolies

Definition

$$\text{dyn}(G, \tau) = \min \left\{ |D| : D \subseteq V(G) : H_{(G,\tau)}(D) = V(G) \right\}$$

D is a dynamic monopoly of (G, τ)

- $\text{dyn}(G, 0) = 0$.
- $\text{dyn}(G, 1) = \text{number of components of } G$.
Dynamic Monopolies

Definition

\[
dyn(G, \tau) = \min \left\{ |D| : D \subseteq V(G) : H_{(G,\tau)}(D) = V(G) \right\}
\]

\(D\) is a dynamic monopoly of \((G, \tau)\)

- \(\dyn(G, 0) = 0\).
- \(\dyn(G, 1) = \text{number of components of } G\).
- \(\dyn(G, d_G)\)
Dynamic Monopolies

Definition

\[\text{dyn}(G, \tau) = \min \left\{ |D| : D \subseteq V(G) : H_{(G, \tau)}(D) = V(G) \right\} \]

- \(\text{dyn}(G, 0) = 0 \).
- \(\text{dyn}(G, 1) = \text{number of components of } G \).
- \(\text{dyn}(G, d_G) = \text{minimum order of a vertex cover of } G \).
Definition

\[\text{dyn}(G, \tau) = \min \left\{ |D| : \ D \subseteq V(G) : H_{(G,\tau)}(D) = V(G) \right\} \]

\(D \) is a dynamic monopoly of \((G, \tau)\)

- \(\text{dyn}(G, 0) = 0 \).
- \(\text{dyn}(G, 1) = \text{number of components of } G \).
- \(\text{dyn}(G, d_G) = \text{minimum order of a vertex cover of } G \).
- \(\text{dyn}(G, d_G - 1) \)
Dynamic Monopolies

Definition

\[\text{dyn}(G, \tau) = \min \left\{ |D| : D \subseteq V(G) : H_{(G, \tau)}(D) = V(G) \right\} \]

\[D \text{ is a dynamic monopoly of } (G, \tau) \]

- \(\text{dyn}(G, 0) = 0 \).
- \(\text{dyn}(G, 1) = \text{number of components of } G \).
- \(\text{dyn}(G, d_G) = \text{minimum order of a vertex cover of } G \).
- \(\text{dyn}(G, d_G - 1) = \text{minimum order of a feedback vertex set of } G \).
Dynamic Monopolies

Definition

\[
dyn(G, \tau) = \min \left\{ |D| : D \subseteq V(G) : H_{(G, \tau)}(D) = V(G) \right\}
\]

\[D \text{ is a dynamic monopoly of } (G, \tau)\]

- \(dyn(G, 0) = 0\).
- \(dyn(G, 1) = \text{number of components of } G\).
- \(dyn(G, d_G) = \text{minimum order of a vertex cover of } G\).
- \(dyn(G, d_G - 1) = \text{minimum order of a feedback vertex set of } G\).

\[D \text{ is a a dynamic monopoly of } (G, \tau) \Updownarrow\]

\[V(G) \setminus D \text{ is a } (d_G - \tau)\text{-degenerate set in } G.\]
Theorem (Chen ’09, P et al. ’11)

Determining $\text{dyn}(G, 2)$ is NP-hard.
Dynamic Monopolies

Theorem (Chen ’09, P et al. ’11)

Determining $\text{dyn}(G, 2)$ is NP-hard.

...even hard to approximate.
Dynamic Monopolies

A simple reduction algorithm for trees...
Dynamic Monopolies

A simple reduction algorithm for trees...
Dynamic Monopolies

A simple reduction algorithm for trees...

\[\tau(v) \leq \tau(u) = s - v \tau(v) - 1 \]
Dynamic Monopolies

A simple reduction algorithm for trees...

\[
\begin{align*}
\tau(v) &\leq 0 = s_v \tau(v) - 1 \\
\tau(u) &
\end{align*}
\]
Dynamic Monopolies

A simple reduction algorithm for trees...

\[\tau(v) \leq 0 \]
Dynamic Monopolies

A simple reduction algorithm for trees...

\[\tau(v) = \tau(u) \leq 0 \]
Dynamic Monopolies

A simple reduction algorithm for trees...

\[\tau(v) \leq 0 \]

\[\tau(u) \leq 0 \]

\[\tau(v) - 1 \]
A simple reduction algorithm for trees...
Dynamic Monopolies

A simple reduction algorithm for trees...

\[\tau(v) \geq 2 \]
Dynamic Monopolies

A simple reduction algorithm for trees...

\[\tau(v) \geq 2 \]
Dynamic Monopolies

A simple reduction algorithm for trees...

\[\tau(v) \geq 2 \]

\[\tau(u) \geq 2 = 1 \]
Dynamic Monopolies

A simple reduction algorithm for trees...

\[
\tau(v) = \tau(u) \geq 2 + 1
\]
A simple reduction algorithm for trees...

\[
\tau(v) = \begin{cases}
\tau(u) \geq 2 & \text{if } \tau(v) \geq 2 \\
1 & \text{if } \tau(v) = 1
\end{cases}
\]
Dynamic Monopolies

A simple reduction algorithm for trees...

\[\tau(v) = 1 \]

\[\tau(u) \]

\[\tau(v) \]

\[\text{Diagram: } v \quad \tau(v) \quad u \quad \tau(u) \]
Dynamic Monopolies

A simple reduction algorithm for trees...

\[
\tau(v) = 1
\]

\[
\tau(u) = 1
\]
A simple reduction algorithm for trees...

\[\tau(v) = 1 \]

\[\tau(u) = 1 \]
Dynamic Monoplies

A simple reduction algorithm for trees...

\[
\tau(v) = 1
\]

\[
\tau(u) = 1
\]
Dynamic Monopolies

Theorem (Chen ’09, P et al. ’11)

For a given pair \((T, \tau)\), where \(T\) is a tree, \(\text{dyn}(T, \tau)\) can be determined in linear time.
Dynamic Monopolies

Two extensions of this result:
Dynamic Monopolies

Two extensions of this result:

Theorem (P et al. ’11)

For a given pair \((G, \tau)\), where \(G\) has blocks of bounded order, \(\text{dyn}(G, \tau)\) can be determined in polynomial time.

Theorem (Ben-Zwi et al. ’11)

For a given pair \((G, \tau)\), where \(G\) has order \(n\) and treewidth \(w\), \(\text{dyn}(G, \tau)\) can be determined in \(nO(w)\) time. Furthermore, it is “highly unlikely” that \(\text{dyn}(G, \tau)\) can be determined in \(n^{o(\sqrt{w})}\) time.

The last result suggests that \(\text{dyn}(G, \tau)\) might only be tractable for tree-structured graphs.
Dynamic Monopolies

Two extensions of this result:

Theorem (P et al. ’11)

For a given pair \((G, \tau)\), where \(G\) has blocks of bounded order, \(\text{dyn}(G, \tau)\) can be determined in polynomial time.

Theorem (Ben-Zwi et al. ’11)

For a given pair \((G, \tau)\), where \(G\) has order \(n\) and treewidth \(w\), \(\text{dyn}(G, \tau)\) can be determined in \(n^{O(w)}\) time.
Dynamic Monopolies

Two extensions of this result:

Theorem (P et al. ’11)
For a given pair \((G, \tau)\), where \(G\) has blocks of bounded order, \(\text{dyn}(G, \tau)\) can be determined in polynomial time.

Theorem (Ben-Zwi et al. ’11)
For a given pair \((G, \tau)\), where \(G\) has order \(n\) and treewidth \(w\), \(\text{dyn}(G, \tau)\) can be determined in \(n^{O(w)}\) time. Furthermore, it is ”highly unlikely” that \(\text{dyn}(G, \tau)\) can be determined in \(n^{o(\sqrt{w})}\) time.
Dynamic Monopolies

Two extensions of this result:

Theorem (P et al. '11)
For a given pair \((G, \tau)\), where \(G\) has blocks of bounded order, \(\text{dyn}(G, \tau)\) can be determined in polynomial time.

Theorem (Ben-Zwi et al. '11)
For a given pair \((G, \tau)\), where \(G\) has order \(n\) and treewidth \(w\), \(\text{dyn}(G, \tau)\) can be determined in \(n^{O(w)}\) time. Furthermore, it is "highly unlikely" that \(\text{dyn}(G, \tau)\) can be determined in \(n^{o(\sqrt{w})}\) time.

The last result suggests that \(\text{dyn}(G, \tau)\) might only be tractable for tree-structured graphs.
Dynamic Monopolies

The key observation for another extension:

Lemma (P et al. '11)

If (G, τ) is such that G is a 2-connected chordal graph and $\tau \leq 2$, then \{u, v\} is a dynamic monopoly for (G, τ) for every edge uv of G.
Dynamic Monopolies
The key observation for another extension:

Lemma (P et al. ’11)

If \((G, \tau)\) is such that

- \(G\) is a 2-connected chordal graph and
- \(\tau \leq 2\),

then \(\{u, v\}\) is a dynamic monopoly for \((G, \tau)\) for every edge \(uv\) of \(G\).
Dynamic Monopolies

The key observation for another extension:

Lemma (P et al. ’11)

If \((G, \tau)\) is such that

- \(G\) is a 2-connected chordal graph and
- \(\tau \leq 2\),

then \(\{u, v\}\) is a dynamic monopoly for \((G, \tau)\) for every edge \(uv\) of \(G\).

Proof:
Dynamic Monopolies

The key observation for another extension:

Lemma (P et al. ’11)

If \((G, \tau)\) is such that
- \(G\) is a 2-connected chordal graph and
- \(\tau \leq 2\),

then \(\{u, v\}\) is a dynamic monopoly for \((G, \tau)\) for every edge \(uv\) of \(G\).

Proof:
Dynamic Monopolies

The key observation for another extension:

Lemma (P et al. ’11)

If \((G, \tau)\) is such that
- \(G\) is a 2-connected chordal graph and
- \(\tau \leq 2\),

then \(\{u, v\}\) is a dynamic monopoly for \((G, \tau)\) for every edge \(uv\) of \(G\).

Proof:

\[
\begin{array}{c}
\end{array}
\]
Dynamic Monopolies

The key observation for another extension:

Lemma (P et al. '11)

If \((G, \tau)\) is such that

- \(G\) is a 2-connected chordal graph and
- \(\tau \leq 2\),

then \(\{u, v\}\) is a dynamic monopoly for \((G, \tau)\) for every edge \(uv\) of \(G\).

Proof:

\[
\text{Diagram}
\]
Dynamic Monopolies
The key observation for another extension:

Lemma (P et al. '11)
If (G, τ) is such that

- G is a 2-connected chordal graph and
- $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.

Proof:
Dynamic Monopolies

The key observation for another extension:

Lemma (P et al. '11)

If \((G, \tau)\) is such that
- \(G\) is a 2-connected chordal graph and
- \(\tau \leq 2\),

then \(\{u, v\}\) is a dynamic monopoly for \((G, \tau)\) for every edge \(uv\) of \(G\).

Proof:

[Diagram showing a 2-connected chordal graph with a dynamic monopoly.]
Dynamic Monopolies

The key observation for another extension:

Lemma (P et al. ’11)

If (G, τ) is such that
- G is a 2-connected chordal graph and
- $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.

Proof:

![Diagram](image)
Dynamic Monopolies

The key observation for another extension:

Lemma (P et al. ’11)

If \((G, \tau)\) is such that
- \(G\) is a 2-connected chordal graph and
- \(\tau \leq 2\),

then \(\{u, v\}\) is a dynamic monopoly for \((G, \tau)\) for every edge \(uv\) of \(G\).

Proof:

[Diagram of a 2-connected chordal graph with a dynamic monopoly indicated.]
For a given pair \((G, \tau)\), where

- \(G\) is chordal and
- \(\tau \leq 2\),

\(\text{dyn}(G, \tau)\) can be determined in polynomial time.
Dynamic Monopolies

Lemma (Chiang et al. '13)

Let t be a non-negative integer. If (G, τ) is such that

- G is a t-connected chordal graph and
- $\tau \leq t$,

then C is a dynamic monopoly for (G, τ) for every clique C of order t.

In particular, $\text{dyn}(G, \tau) \leq t$.

Lemma (Chiang et al. ’13)

Let t be a non-negative integer. If (G, τ) is such that
- G is a t-connected chordal graph and
- $\tau \leq t$,
then C is a dynamic monopoly for (G, τ) for every clique C of order t. In particular,

$$\text{dyn}(G, \tau) \leq t.$$
Dynamic Monopolies

Problem

Is there a polynomial time algorithm that determines

\[\text{dyn}(G, \tau) \]

for a given pair \((G, \tau)\) such that

- \(G\) is chordal, and
- \(\tau\) is bounded?
Let t be a non-negative integer. For a given pair (G, τ), where

- G is an interval graph, and
- $\tau \leq t$,

$\text{dyn}(G, \tau)$ can be determined in polynomial time.
Dynamic Monopolies

Theorem (BEPR '18)

For a given triple \((G, \tau, k)\), where

- \(G\) is a chordal graph,
- \(\tau\) is a threshold function for \(G\), and
- \(k\) is a positive integer,

it is NP-complete to decide whether \(\text{dyn}(G, \tau) \leq k\).
Dynamic Monopolies

Theorem (BEPR ’18)

For a given triple \((G, \tau, k)\), where

- \(G\) is a chordal graph,
- \(\tau\) is a threshold function for \(G\), and
- \(k\) is a positive integer,

it is NP-complete to decide whether \(\text{dyn}(G, \tau) \leq k\).
Dynamic Monopolies
Dynamic Monopolies

Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function.
Dynamic Monopolies

Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function. Let $(I(u))_{u \in V(G)}$ be an interval representation using closed intervals with distinct endpoints $x_1 < x_2 < \ldots < x_{2n}$.

For $c_i = |C_i|$, we have $|c_i - c_{i+1}| = 1$.

Let $j_1 < j_2 < \ldots < j_{k-1}$ be the indices i with $c_i < \min\{c_i - 1, c_i + 1, t\}$ and let $j_k = 2n-1$.

Dynamic Monopolies

Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function. Let $(I(u))_{u \in V(G)}$ be an interval representation using closed intervals with distinct endpoints $x_1 < x_2 < \ldots < x_{2n}$.

\[x_i \quad x_{i+1} \]
Dynamic Monopolies

Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function. Let $(I(u))_{u \in V(G)}$ be an interval representation using closed intervals with distinct endpoints $x_1 < x_2 < \ldots < x_{2n}$.

Every minimal vertex cut of G is a clique of the form

$$C_i = \left\{ u \in V(G) : [x_i, x_{i+1}] \subseteq I(u) \right\}.$$
Dynamic Monopolies

Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function. Let $(I(u))_{u \in V(G)}$ be an interval representation using closed intervals with distinct endpoints $x_1 < x_2 < \ldots < x_{2n}$.

Every minimal vertex cut of G is a clique of the form

$$C_i = \left\{ u \in V(G) : [x_i, x_{i+1}] \subseteq I(u) \right\}.$$

For $c_i = |C_i|$, we have $|c_i - c_{i+1}| = 1$.
Dynamic Monopolies

Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function. Let $(l(u))_{u \in V(G)}$ be an interval representation using closed intervals with distinct endpoints $x_1 < x_2 < \ldots < x_{2n}$.

Every minimal vertex cut of G is a clique of the form

$$C_i = \left\{ u \in V(G) : [x_i, x_{i+1}] \subseteq l(u) \right\}.$$

For $c_i = |C_i|$, we have $|c_i - c_{i+1}| = 1$.

Let $j_1 < j_2 < \ldots < j_{k-1}$ be the indices i with

$$c_i < \min \left\{ c_{i-1}, c_{i+1}, t \right\}$$

and let $j_k = 2n - 1$.
Dynamic Monopolies

\[V_i = C_1 \cup \cdots \cup C_j, \quad G_i = G[V_i], \quad B_i = C_j. \]

\[|B_i| < t. \]

No vertex in \(V_i \setminus B_i \) has a neighbor in \(V(G) \setminus V_i \).

\[\partial V_i = (V_i \setminus V_{i-1}) \cup B_{i-1}, \quad \partial G_i = G[\partial V_i]. \]
Dynamic Monopolies

Let $V_i = C_1 \cup \cdots \cup C_{j_i}$, $G_i = G[V_i]$, and $B_i = C_{j_i}$.
Dynamic Monopolies

Let $V_i = C_1 \cup \cdots \cup C_{j_i}$, $G_i = G[V_i]$, and $B_i = C_{j_i}$.
Dynamic Monopolies

Let \(V_i = C_1 \cup \cdots \cup C_j \), \(G_i = G[V_i] \), and \(B_i = C_j \).

| \(B_i \) | < \(t \).
Dynamic Monopolies

Let \(V_i = C_1 \cup \cdots \cup C_j \), \(G_i = G[V_i] \), and \(B_i = C_j \).

\(|B_i| < t\). No vertex in \(V_i \setminus B_i \) has a neighbor in \(V(G) \setminus V_i \).
Dynamic Monopolies

Let $V_i = C_1 \cup \cdots \cup C_{j_i}$, $G_i = G[V_i]$, and $B_i = C_{j_i}$.

$|B_i| < t$. No vertex in $V_i \setminus B_i$ has a neighbor in $V(G) \setminus V_i$.

Let $\partial V_i = (V_i \setminus V_{i-1}) \cup B_{i-1}$, and $\partial G_i = G[\partial V_i]$.
Dynamic Monopolies

Claim

Each ∂G_i is either a clique of order at most t or t-connected.
Dynamic Monopolies

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Proof:
Dynamic Monopolies

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Proof: Suppose $t = 3$.
Dynamic Monopolies

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Proof: Suppose $t = 3$.
Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Proof: Suppose $t = 3$.
Dynamic Monopolies

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Proof: Suppose $t = 3$.

\[
\begin{array}{c}
\downarrow \\
| \\
\downarrow \\
| \\
\end{array}
\]
Dynamic Monopolies

Claim

Each \(\partial G_i \) is either a clique of order at most \(t \) or \(t \)-connected.

Proof: Suppose \(t = 3 \).
Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Proof: Suppose $t = 3$.

![Diagram of a grid with arrows indicating connections between nodes]
Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Proof: Suppose $t = 3$.

\[
\partial G_i
\]
Dynamic Monopolies

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Proof: Suppose $t = 3$.

\[
\partial G_{i+1}
\]
Dynamic Monopolies

Claim
Each ∂G_i is either a clique of order at most t or t-connected.

Proof: Suppose $t = 3$.

\[\square \]
Dynamic Monopolies

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Proof: Suppose $t = 3$.

(jump a little!?)
Dynamic Monopolies

A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where

(i) X_i is a subset of B_i,
(ii) \prec_i is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and
(iii) $\rho_i : B_i \setminus X_i \to \{0, 1, \ldots, n\}$.

There are $O\left(2^{t-1} - 1 \cdot (t-1)!(n+1)t-1\right)$ such local cascades.

A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where

(i) X_i is a subset of B_i,

(ii) \prec_i is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and

(iii) $\rho_i : B_i \setminus X_i \to \{0, 1, \ldots, n\}$.

There are $O\left(2^{t-1}(t-1)!^{n+1}t^{-1}\right)$ such local cascades.
A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where

(i) X_i is a subset of B_i,

(ii) \prec_i is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and

(iii) $\rho_i : B_i \setminus X_i \rightarrow \{0, 1, \ldots, n\}$.

There are $O\left(2^{t-1}(t-1)!^{n+1}t-1\right)$ such local cascades.
A local cascade for G_i is a triple (X_i, \preceq_i, ρ_i), where

(i) X_i is a subset of B_i,

(ii) \preceq_i is a linear order on B_i with $X_i \preceq_i B_i \setminus X_i$, and

(iii) $\rho_i : B_i \setminus X_i \to \{0, 1, \ldots, n\}$.

There are $O((2^t - 1)(t - 1)!n^{t - 1})$ such local cascades.
A local cascade for G_i is a triple (X_i, \preceq_i, ρ_i), where

(i) X_i is a subset of B_i,

(ii) \preceq_i is a linear order on B_i with $X_i \preceq_i B_i \setminus X_i$, and

(iii) $\rho_i : B_i \setminus X_i \to \{0, 1, \ldots, n\}$.

There are $O\left(2^{t-1}(t-1)!^{n+1}t^{-1}\right)$ such local cascades.
A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where

(i) X_i is a subset of B_i,

(ii) \prec_i is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and

(iii) $\rho_i : B_i \setminus X_i \rightarrow \{0, 1, \ldots, n\}$.

There are $O(2^t - 1) (t - 1)! (n + 1)$ such local cascades.
Dynamic Monopolies

A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where

1. $(i)\ X_i$ is a subset of B_i,
2. $(ii)\ \prec_i$ is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and
3. $(iii)\ \rho_i : B_i \setminus X_i \to \{0, 1, \ldots, n\}$.

There are $O\left(2^t - 1 \cdot (t - 1)! (n + 1)^t - 1\right)$ such local cascades.
Dynamic Monopolies

A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where

(i) X_i is a subset of B_i,
(ii) \prec_i is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and
(iii) $\rho_i : B_i \setminus X_i \rightarrow \{0, 1, \ldots, n\}$.

There are $O((2t-1)(t-1)! (n+1)t-1)$ such local cascades.
A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where
A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where

- X_i is a subset of B_i.
A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where

1. X_i is a subset of B_i,
2. \prec_i is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and
A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where

1. X_i is a subset of B_i,
2. \prec_i is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and
3. $\rho_i : B_i \setminus X_i \rightarrow \{0, 1, \ldots, n\}$.
A local cascade for G_i is a triple (X_i, \prec_i, ρ_i), where

1. X_i is a subset of B_i,
2. \prec_i is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and
3. $\rho_i : B_i \setminus X_i \to \{0, 1, \ldots, n\}$.

There are $O\left(2^{t-1}(t - 1)!(n + 1)^{t-1}\right)$ such local cascades.
Dynamic Monopolies
Dynamic Monopolies

For a local cascade \((X_i, \prec_i, \rho_i)\) for \(G_i\), let

\[\text{dyn}_i(X_i, \prec_i, \rho_i) \]

be the minimum order of a subset \(Y_i\) of \(V_i \setminus B_i\) such that the following conditions hold:
Dynamic Monopolies

For a local cascade \((X_i, \prec_i, \rho_i)\) for \(G_i\), let

\[
dyn_i(X_i, \prec_i, \rho_i)
\]

be the minimum order of a subset \(Y_i\) of \(V_i \setminus B_i\) such that the following conditions hold:

\(\text{(iv)}\) \(|(X_i \cup Y_i) \cap \partial V_j| \leq t\) for every \(j \in [i]\).
Dynamic Monopolies

For a local cascade \((X_i, \prec_i, \rho_i)\) for \(G_i\), let

\[
dyn_i(X_i, \prec_i, \rho_i)
\]

be the minimum order of a subset \(Y_i\) of \(V_i \setminus B_i\) such that the following conditions hold:

(iv) \(|(X_i \cup Y_i) \cap \partial V_j| \leq t\) for every \(j \in [i]\).

(v) There is a linear extension

\[
u_1 \prec \ldots \prec u_{n(G_i)}
\]

of \(\prec_i\) to \(V(G_i)\) such that \(X_i \cup Y_i \prec V_i \setminus (X_i \cup Y_i)\),
Dynamic Monopolies

For a local cascade \((X_i, \prec_i, \rho_i)\) for \(G_i\), let

\[
\text{dyn}_i(X_i, \prec_i, \rho_i)
\]

be the minimum order of a subset \(Y_i\) of \(V_i \setminus B_i\) such that the following conditions hold:

(iv) \(|(X_i \cup Y_i) \cap \partial V_j| \leq t\) for every \(j \in [i]\).

(v) There is a linear extension

\[
u_1 \prec \ldots \prec u_{n(G_i)}
\]

of \(\prec_i\) to \(V(G_i)\) such that \(X_i \cup Y_i \prec V_i \setminus (X_i \cup Y_i)\), and, for every \(j\) in \([n(G_i)]\),
Dynamic Monopolies

For a local cascade \((X_i, \prec_i, \rho_i)\) for \(G_i\), let

\[
dyn_i(X_i, \prec_i, \rho_i)
\]

be the minimum order of a subset \(Y_i\) of \(V_i \setminus B_i\) such that the following conditions hold:

(iv) \(|(X_i \cup Y_i) \cap \partial V_j| \leq t\) for every \(j \in [i]\).

(v) There is a linear extension

\[
u_1 \prec \ldots \prec u_{n(G_i)}
\]

of \(\prec_i\) to \(V(G_i)\) such that \(X_i \cup Y_i \prec V_i \setminus (X_i \cup Y_i)\),

and, for every \(j\) in \([n(G_i)]\),

(a) either \(u_j \in X_i \cup Y_i\),
Dynamic Monopolies

For a local cascade \((X_i, \preceq_i, \rho_i)\) for \(G_i\), let

\[
dyn_i(X_i, \preceq_i, \rho_i)
\]

be the minimum order of a subset \(Y_i\) of \(V_i \setminus B_i\) such that the following conditions hold:

\((iv)\) \(|(X_i \cup Y_i) \cap \partial V_j| \leq t\) for every \(j \in [i]\).

\((v)\) There is a linear extension

\[
u_1 \preceq \ldots \preceq u_{n(G_i)}
\]

of \(\preceq_i\) to \(V(G_i)\) such that \(X_i \cup Y_i \prec V_i \setminus (X_i \cup Y_i)\), and, for every \(j\) in \([n(G_i)]\),

(a) either \(u_j \in X_i \cup Y_i\),

(b) or \(u_j \in V_i \setminus (B_i \cup Y_i)\) and \(|N_G(u_j) \cap \{u_1, \ldots, u_{j-1}\}| \geq \tau(u_j)\),
Dynamic Monopolies

For a local cascade \((X_i, \prec_i, \rho_i)\) for \(G_i\), let
\[
dyn_i(X_i, \prec_i, \rho_i)
\]
be the minimum order of a subset \(Y_i\) of \(V_i \setminus B_i\) such that the following conditions hold:

\((iv)\) \(|(X_i \cup Y_i) \cap \partial V_j| \leq t\) for every \(j \in [i]\).

\((v)\) There is a linear extension
\[
u_1 \prec \ldots \prec u_{n(G_i)}
\]
of \(\prec_i\) to \(V(G_i)\) such that \(X_i \cup Y_i \prec V_i \setminus (X_i \cup Y_i)\), and, for every \(j\) in \([n(G_i)]\),

\[a\] either \(u_j \in X_i \cup Y_i\),

\[b\] or \(u_j \in V_i \setminus (B_i \cup Y_i)\) and
\[
|N_G(u_j) \cap \{u_1, \ldots, u_{j-1}\}| \geq \tau(u_j),
\]

\[c\] or \(u_j \in B_i \setminus X_i\) and
\[
|N_G(u_j) \cap \{u_1, \ldots, u_{j-1}\}| \geq \tau(u_j) - \rho_i(u_j).
\]
Dynamic Monopolies

Claim

\[\text{dyn}(G, \tau) = \min \left\{ 1 + \text{dyn}_k(B_k, \emptyset, 0), 0 + \text{dyn}_k(\emptyset, \emptyset, 0) \right\}. \]
Claim

\[\text{dyn}(G, \tau) = \min \left\{ 1 + \text{dyn}_k(B_k, \emptyset, 0), 0 + \text{dyn}_k(\emptyset, \emptyset, 0) \right\}. \]

Claim

For every \(i\) *and every local cascade* \((X_i, \prec_i, \rho_i)\) *for* \(G_i\), \(\text{dyn}_i(X_i, \prec_i, \rho_i)\) *can be determined recursively in polynomial time.*
Dynamic Monopolies

Claim

\[\text{dyn}(G, \tau) = \min \left\{ 1 + \text{dyn}_k(B_k, \emptyset, 0), 0 + \text{dyn}_k(\emptyset, \emptyset, 0) \right\}. \]

Claim

For every \(i \) and every local cascade \((X_i, \prec_i, \rho_i)\) for \(G_i \), \(\text{dyn}_i(X_i, \prec_i, \rho_i) \) can be determined recursively in polynomial time.
Vaccination

\[\text{dyn}(G, \tau) \] may be considered a measure of network vulnerability. Given a budget \(b \in \mathbb{Z} \geq 0 \), we want to minimize this vulnerability by maximizing \(\text{dyn}(G, \tau) \).

Scenario 1
By increasing the threshold value of \(b \) vertices beyond their degree. (Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)

Scenario 2
By removing \(b \) vertices. (The vaccinated vertices no longer participate in the spreading.)

Scenario 3
By increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase to \(b \). (Partial/imperfect immunization.)
Vaccination

dyn(G, \tau) may be considered a measure of network vulnerability.
Vaccination

dyn(G, τ) may be considered a measure of network vulnerability.

Given a budget \(b \in \mathbb{Z}_{\geq 0} \), we want to minimize this vulnerability by maximizing dyn(G, τ).

Scenario 1
By increasing the threshold value of \(b \) vertices beyond their degree. (Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)

Scenario 2
By removing \(b \) vertices. (The vaccinated vertices no longer participate in the spreading.)

Scenario 3
By increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase to \(b \). (Partial/imperfect immunization.)
Vaccination

dyn(G, τ) may be considered a measure of network vulnerability.

Given a budget \(b \in \mathbb{Z}_{\geq 0} \), we want to minimize this vulnerability by maximizing \(\text{dyn}(G, \tau) \).

- **Scenario 1**
 By increasing the threshold value of \(b \) vertices beyond their degree.

- **Scenario 2**
 By removing \(b \) vertices. (The vaccinated vertices no longer participate in the spreading.)

- **Scenario 3**
 By increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase to \(b \). (Partial/imperfect immunization.)
Vaccination

dyn\((G, \tau)\) may be considered a measure of network vulnerability.

Given a budget \(b \in \mathbb{Z}_{\geq 0}\), we want to minimize this vulnerability by maximizing \(\text{dyn}(G, \tau)\).

- **Scenario 1**
 By increasing the threshold value of \(b\) vertices beyond their degree.
 (Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)
Vaccination

dyn(\(G, \tau\)) may be considered a measure of network vulnerability.

Given a budget \(b \in \mathbb{Z}_{\geq 0}\), we want to minimize this vulnerability by maximizing dyn(\(G, \tau\))

- **Scenario 1**
 By increasing the threshold value of \(b\) vertices beyond their degree. *(Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)*

- **Scenario 2**
 By removing \(b\) vertices.

- **Scenario 3**
 By increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase to \(b\). *(Partial/imperfect immunization.)*
Vaccination

dyn\((G, \tau)\) may be considered a measure of network vulnerability.

Given a budget \(b \in \mathbb{Z}_{\geq 0}\), we want to minimize this vulnerability by maximizing dyn\((G, \tau)\)

- **Scenario 1**
 By increasing the threshold value of \(b\) vertices beyond their degree.
 (Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)

- **Scenario 2**
 By removing \(b\) vertices.
 (The vaccinated vertices no longer participate in the spreading.)
Vaccination

dyn(\(G, \tau\)) may be considered a measure of network vulnerability.

Given a budget \(b \in \mathbb{Z}_{\geq 0}\), we want to minimize this vulnerability by maximizing dyn(\(G, \tau\))

- **Scenario 1**
 By increasing the threshold value of \(b\) vertices beyond their degree. *(Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)*

- **Scenario 2**
 By removing \(b\) vertices. *(The vaccinated vertices no longer participate in the spreading.)*

- **Scenario 3**
 By increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase to \(b\).*
Vaccination

dyn(G, τ) may be considered a measure of network vulnerability.

Given a budget \(b \in \mathbb{Z}_{\geq 0} \), we want to minimize this vulnerability by maximizing \(\text{dyn}(G, \tau) \).

- **Scenario 1**
 By increasing the threshold value of \(b \) vertices beyond their degree. *(Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)*

- **Scenario 2**
 By removing \(b \) vertices. *(The vaccinated vertices no longer participate in the spreading.)*

- **Scenario 3**
 By increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase to \(b \). *(Partial/imperfect immunization.)*
Vaccination
<table>
<thead>
<tr>
<th>Theorem (Khoshkhah et al. ’15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $\bar{\tau} \in \mathbb{R} > 0$. If G is a graph with vertex degrees $d_G(u_1) \leq ... \leq d_G(u_n(G))$, then the maximum of $\text{dyn}(G, \tau)$ over all non-negative choices for τ such that the average threshold is at most $\bar{\tau}$ equals $\max{k : k \sum_{i=1}^{n} (d_G(u_i) + 1) \leq n(G) \bar{\tau}}$.</td>
</tr>
<tr>
<td>Proof: Follows easily from the bound due to Ackerman et al. □</td>
</tr>
</tbody>
</table>
Theorem (Khoshkhah et al. ’15)

Let $\bar{\tau} \in \mathbb{R}_{>0}$.

Proof: Follows easily from the bound due to Ackerman et al. □
Vaccination

Theorem (Khoshkhah et al. ’15)

Let $\bar{\tau} \in \mathbb{R}_{>0}$.

If G is a graph with vertex degrees $d_G(u_1) \leq \ldots \leq d_G(u_{n(G)})$, then the maximum of $\text{dyn}(G, \tau)$ over all non-negative choices for τ such that the average threshold is at most $\bar{\tau}$ equals

Proof: Follows easily from the bound due to Ackerman et al. \Box
Theorem (Khoshkhah et al. ’15)

Let $\bar{\tau} \in \mathbb{R}_{>0}$.

If G is a graph with vertex degrees $d_G(u_1) \leq \ldots \leq d_G(u_{n(G)})$, then the maximum of $\text{dyn}(G, \tau)$ over all non-negative choices for τ such that the average threshold is at most $\bar{\tau}$ equals

$$\max \left\{ k : \sum_{i=1}^{k} (d_G(u_i) + 1) \leq n(G)\bar{\tau} \right\}.$$
Vaccination

Theorem (Khoshkhah et al. ’15)

Let $\bar{\tau} \in \mathbb{R}_{>0}$.

If G is a graph with vertex degrees $d_G(u_1) \leq \ldots \leq d_G(u_{n(G)})$, then the maximum of $\text{dyn}(G, \tau)$ over all non-negative choices for τ such that the average threshold is at most $\bar{\tau}$ equals

$$\max \left\{ k : \sum_{i=1}^{k} (d_G(u_i) + 1) \leq n(G)\bar{\tau} \right\}.$$

Proof: Follows easily from the bound due to Ackerman et al. □
Theorem (Khoshkhah et al. ’15)

Let $\bar{\tau} \in \mathbb{R}_{>0}$.

If G is a graph with vertex degrees $d_G(u_1) \leq \ldots \leq d_G(u_{n(G)})$, then the maximum of $\text{dyn}(G, \tau)$ over all non-negative choices for τ such that the average threshold is at most $\bar{\tau}$ equals

$$
\max \left\{ k : \sum_{i=1}^{k} (d_G(u_i) + 1) \leq n(G) \bar{\tau} \right\}.
$$

Proof: Follows easily from the bound due to Ackerman et al. □

Theorem (Khoshkhah et al. ’15)

Requiring $0 \leq \tau \leq d_G$ in the above setting, the problem becomes NP-hard for planar graphs but can be solved efficiently for trees.
Vaccination

The three scenarios lead to the following parameters:
Vaccination

The three scenarios lead to the following parameters:

\[
vacc_1(G, \tau, b) = \max \left\{ \text{dyn}(G, \tau_X) : X \in \binom{V(G)}{b} \right\}
\]
Vaccination

The three scenarios lead to the following parameters:

\[
vacc_1(G, \tau, b) = \max \left\{ \text{dyn}(G, \tau_X) : X \in \binom{V(G)}{b} \right\}
\]

\[
vacc_2(G, \tau, b) = \max \left\{ \text{dyn}(G - Y, \tau) : Y \in \binom{V(G)}{b} \right\}
\]
Vaccination

The three scenarios lead to the following parameters:

\[
vacc_1(G, \tau, b) = \max \left\{ \text{dyn}(G, \tau X) : X \in \binom{V(G)}{b} \right\}
\]

\[
vacc_2(G, \tau, b) = \max \left\{ \text{dyn}(G - Y, \tau) : Y \in \binom{V(G)}{b} \right\}
\]

\[
vacc_3(G, \tau, \iota_{\text{max}}, b) = \max \left\{ \text{dyn}(G, \tau + \iota) : \iota \in \mathbb{Z}^{V(G)}, \right. \\
\quad \left. 0 \leq \iota \leq \iota_{\text{max}}, \text{ and } \iota(V(G)) = b \right\}
\]
Vaccination

Theorem (BDEPR '18)

Given a tree T of order n, τ, b, and ι_{max}, $\text{vacc}_1(T, \tau, b)$ and $\text{vacc}_3(T, \tau, b)$ can be determined in $O(n^2(b + 1)^2)$ time, and $\text{vacc}_2(T, \tau, b)$ can be determined in $O(n^3(b + 1)^2)$ time.
Given a tree T of order n, τ, b, and ν_{max},
Vaccination

Theorem (BDEPR '18)

Given a tree T of order n, τ, b, and ν_{max},

- $\text{vacc}_1(T, \tau, b)$ and $\text{vacc}_3(T, \tau, b)$ can be determined in $O\left(n^2(b + 1)^2\right)$ time, and
Vaccination

Theorem (BDEPR ’18)

Given a tree T of order n, τ, b, and ν_{max},

- $\text{vacc}_1(T, \tau, b)$ and $\text{vacc}_3(T, \tau, b)$ can be determined in $O(n^2(b + 1)^2)$ time, and
- $\text{vacc}_2(T, \tau, b)$ can be determined in $O(n^3(b + 1)^2)$ time.
Thank you for the attention!