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...examples for things that can spread...
opinions,
computer viruses,
diseases,

°

°

°

@ products,
@ habits,

°
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Let G be a graph.
Let 7: V(G) — Z be a threshold function.
Let D C V(G).

The hull Hig 7)(D) of D in (G,7) is obtained as follows:

H <+ D;

while |Ng(u) N H| > 7(u) for some u € V(G) \ H do
| H<« HU{u};

end

H(G,T)(D) «— H,

return Hs - (D);
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dyn(G,7) = min{|D| . D C V(G): Hen(D) = V(G) }

D is a dynamic monopoly of (G, 7)

dyn(G,0) = 0.

dyn(G, 1) = number of components of G.

dyn(G, dg) = minimum order of a vertex cover of G.

dyn(G, dg — 1) = minimum order of a feedback vertex set of G.

D is a a dynamic monopoly of (G, T)

)
V(G)\ D is a (dg — 7)-degenerate set in G.
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Theorem (Chen '09, P et al. '11)
Determining dyn(G,2) is NP-hard.

...even hard to approximate.
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Theorem (Chen '09, P et al. '11)

For a given pair (T,T), where T is a tree, dyn(T,T) can be determined in
linear time.
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can be determined in polynomial time.

Theorem (Ben-Zwi et al. '11)

For a given pair (G, T), where G has order n and treewidth w, dyn(G, T)
can be determined in n°") time. Furthermore, it is "highly unlikely” that
dyn(G, 7) can be determined in n°vV*%) time.

The last result suggests that dyn(G, 7) might only be tractable for
tree-structured graphs.
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Lemma (Chiang et al. '13)
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If (G, T) is such that

e G is a t-connected chordal graph and
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Dynamic Monopolies

Lemma (Chiang et al. '13)

Let t be a non-negative integer.
If (G, T) is such that
e G is a t-connected chordal graph and
o 7 < t,
then C is a dynamic monopoly for (G, 1) for every clique C of order t.
In particular,
dyn(G,7) < t.
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Dynamic Monopolies

Problem

Is there a polynomial time algorithm that determines
dyn(G, )

for a given pair (G, T) such that
e G is chordal, and

@ 7 is bounded?
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o G is an interval graph, and
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Dynamic Monopolies

Theorem (BEPR '18)
For a given triple (G, T, k), where
o G is a chordal graph,
@ T is a threshold function for G, and

@ k is a positive integer,

it is NP-complete to decide whether dyn(G, 1) < k.
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» (jump a little?!)
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Let G be an interval graph of order n, and let 7 < t be a threshold

function. Let (/(u))ucv(c) be an interval representation using closed
intervals with distinct endpoints x3 < xo < ... < Xo,.

Xi Xi+1

Every minimal vertex cut of G is a clique of the form
C = {u € V(G) : [xi,xi41] C /(u)}.

For ¢; = |Ci|, we have |¢; — ¢ciy1| = 1.

Let j1 < jo < ... < jk_1 be the indices i with

¢i < min {Ci—la Cit1s t}

and let jy =2n—1.
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Let ;=G U---UG;, G = G[Vi], and B, = C;.
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Let ;=G U---UG;, G = G[Vi], and B, = C;.
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|Bi| < t. No vertex in V; \ B; has a neighbor in V(G) \ V;.
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Let ;=G U---UG;, G = G[Vi], and B, = C;.

w1
T —
o8 | i
\,kE;*ﬁ_ e

|Bi| < t. No vertex in V; \ B; has a neighbor in V(G) \ V;.
Let OV; = (V,\ \/,',1) U Bj_1, and 0G; = G[(‘)\/,]
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Dynamic Monopolies

Claim

Each OG; is either a clique of order at most t or t-connected.

Proof: Suppose t = 3.

0Git1

> (jump a little?!)
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Dynamic Monopolies

A local cascade for G; is a triple (Xi, <;, p;), where

@ X is a subset of B;,

@ < is a linear order on B; with X; <; B; \ Xj, and

@ pi:B\Xi—{0,1,...,n}.

There are O(2t*1(t —1i(n+ 1)“1) such local cascades.
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(iv) [(XiuY;)noV,| <t for every j € [i].

(v) There is a linear extension
up < ... =< Up(g)

of <j to V(G;) such that X;U Y; < V; \ (X;UY)),

and, for every j in [n(G;)],

@ either uj e X;U Y],

@ orueV;\(BiUY;) and ‘N(;(uj) Nn{u,..., uj_l}’ > 7(uj),

@ or uj € B; \X, and NG(UJ') N {Ul, ceey Ujfl} > T(Uj) - p,'(Uj).
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dyn(G,7) may be considered a measure of network vulnerability.

Given a budget b € Zx>(, we want to minimize this vulnerability by
maximizing dyn(G, 7)

@ Scenario 1
By increasing the threshold value of b vertices beyond their degree.
(Note that the vaccinated vertices belong to every dynamic monopoly
and still participate in the spreading.)

@ Scenario 2
By removing b vertices.
(The vaccinated vertices no longer participate in the spreading.)

@ Scenario 3
By increasing the threshold values of individual vertices subject to
vertex-dependent lower and upper bounds, and fixing the total
increase to b. (Partial/imperfect immunization.)
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Theorem (Khoshkhah et al. '15)

Let T € Ryy.

If G is a graph with vertex degrees dg(u1) < ... < dg(un(c)), then the
maximum of dyn(G, T) over all non-negative choices for T such that the
average threshold is at most T equals

k
max{k > (do(ui) +1) < n(G)?} :
i=1

Proof: Follows easily from the bound due to Ackerman et al. [J

Theorem (Khoshkhah et al. '15)

Requiring 0 < 7 < dg in the above setting, the problem becomes NP-hard
for planar graphs but can be solved efficiently for trees.

26/1




Vaccination

The three scenarios lead to the following parameters:

27/1



Vaccination

The three scenarios lead to the following parameters:

vaccy(G,7,b) = max{dyn(G,Tx) X € <V(bG))}

27/1



Vaccination

The three scenarios lead to the following parameters:
V(G
vacc1(G, 7, b) = max{dyn(G,TX) X € < (b ))}

vaces(G,7,b) = max{dyn(G vive <V(G)>}

27/1
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The three scenarios lead to the following parameters:
V(G
vacc1(G, 7, b) = max{dyn(G,TX) X € < (b ))}
V(G
vacca(G, T, b) = max{dyn(G -Y,7):Ye < ( )>}

vaces(G, T, tmax, b) = max{dyn(G,T +u):€ zV(6),

0 <t < imax, and ((V(G)) = b}
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Given a tree T of order n, T, b, and tmax.,

e vacci(T, 7, b) and vacc3(T, T, b) can be determined in
O (n?(b+1)?) time, and

e vacco(T, 7, b) can be determined in O (n®(b+ 1)?) time.
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Thank you for the attention!
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