Zero Forcing

Dieter Rautenbach

Universität Ulm
Zero Forcing

Dieter Rautenbach

Universität Ulm

Joint work with M. Gentner, L.D. Penso, and U.S. Souza
Graphs and Matrices

Let $S(n) = \{ A \in \mathbb{R}^{n \times n} : A^T = A \}$.

\[
\begin{bmatrix}
1 & 2 & 0 & 2 \\
2 & 6 & 3 & 2 \\
0 & 3 & 0 & 0 \\
2 & 2 & 0 & 1 \\
\end{bmatrix}
\]

$G(A) = \{ 1 2 \ 3 4 \}$.

Let $S(G) = \{ A \in S(n) : G(A) = G \}$ and $M(G) = \max \{ n - \text{rg}(A) : A \in S(G) \} \leq \cdots$ (zero forcing)
Graphs and Matrices

Let $S(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$.
For $A \in S(n)$, let $G(A)$ be the graph with vertex set $\{1, 2, \ldots, n\}$ and edge set

$$\{ij : 1 \leq i < j \leq n \text{ and } a_{i,j} \neq 0\}.$$
Graphs and Matrices

Let \(S(n) = \{ A \in \mathbb{R}^{n \times n} : A^T = A \} \).

For \(A \in S(n) \), let \(G(A) \) be the graph with vertex set \(\{1, 2, \ldots, n\} \) and edge set

\[\{ij : 1 \leq i < j \leq n \text{ and } a_{i,j} \neq 0\} . \]

\[
A = \begin{pmatrix}
1 & 2 & 0 & 2 \\
2 & 6 & 3 & 2 \\
0 & 3 & 0 & 0 \\
2 & 2 & 0 & 1
\end{pmatrix}
\]

\(G(A) \) =

\[
\begin{array}{cccc}
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast
\end{array}
\]

Let \(S(G) = \{ A \in S(n) : G(A) = G \} \) and \(M(G) = \max \{ n - \text{rg}(A) : A \in S(G) \} \leq \text{???(; zero forcing)} \).
Graphs and Matrices

Let $S(n) = \{ A \in \mathbb{R}^{n \times n} : A^T = A \}$. For $A \in S(n)$, let $G(A)$ be the graph with vertex set $\{1, 2, \ldots, n\}$ and edge set

$$
\{ ij : 1 \leq i < j \leq n \text{ and } a_{i,j} \neq 0 \}.
$$

$$
A = \begin{pmatrix}
1 & 2 & 0 & 2 \\
2 & 6 & 3 & 2 \\
0 & 3 & 0 & 0 \\
2 & 2 & 0 & 1
\end{pmatrix}
$$

$$
G(A) =
$$
Graphs and Matrices

Let \(S(n) = \{ A \in \mathbb{R}^{n \times n} : A^T = A \} \).
For \(A \in S(n) \), let \(G(A) \) be the graph with vertex set \(\{1, 2, \ldots, n\} \) and edge set
\[
\{ ij : 1 \leq i < j \leq n \text{ and } a_{i,j} \neq 0 \}.
\]

\[
A = \begin{pmatrix}
1 & 2 & 0 & 2 \\
2 & 6 & 3 & 2 \\
0 & 3 & 0 & 0 \\
2 & 2 & 0 & 1
\end{pmatrix}
\]

\[
G(A) = \begin{pmatrix}
\bullet & \bullet & \bullet & \bullet \\
1 & 2 & 4 & 3
\end{pmatrix}
\]
Graphs and Matrices

Let $S(n) = \{ A \in \mathbb{R}^{n \times n} : A^T = A \}$.

For $A \in S(n)$, let $G(A)$ be the graph with vertex set $\{1, 2, \ldots, n\}$ and edge set

$$\{ij : 1 \leq i < j \leq n \text{ and } a_{i,j} \neq 0\}.$$

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 6 & 3 & 2 \\ 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix} \quad G(A) = \begin{array}{cccc} 1 & 2 \\ 4 & 3 \end{array}$$
Graphs and Matrices

Let \(S(n) = \{ A \in \mathbb{R}^{n \times n} : A^T = A \} \).

For \(A \in S(n) \), let \(G(A) \) be the graph with vertex set \(\{1, 2, \ldots, n\} \) and edge set
\[
\{ ij : 1 \leq i < j \leq n \text{ and } a_{i,j} \neq 0 \}.
\]

\[
A = \begin{pmatrix}
1 & 2 & 0 & 2 \\
2 & 6 & 3 & 2 \\
0 & 3 & 0 & 0 \\
2 & 2 & 0 & 1
\end{pmatrix}
\]

\[
G(A) = \begin{array}{c}
1 \\
\bullet \\
2 \\
\bullet \\
4 \\
\bullet \\
3 \\
\bullet
\end{array}
\]

Let

\[
S(G) = \{ A \in S(n) : G(A) = G \}
\]
Graphs and Matrices

Let $S(n) = \{ A \in \mathbb{R}^{n \times n} : A^T = A \}$.
For $A \in S(n)$, let $G(A)$ be the graph with vertex set $\{1, 2, \ldots, n\}$ and edge set
\[\{ij : 1 \leq i < j \leq n \text{ and } a_{i,j} \neq 0 \}. \]

\[
A = \begin{pmatrix}
1 & 2 & 0 & 2 \\
2 & 6 & 3 & 2 \\
0 & 3 & 0 & 0 \\
2 & 2 & 0 & 1 \\
\end{pmatrix}
\]

Let
\[
S(G) = \{ A \in S(n) : G(A) = G \} \quad \text{and} \quad M(G) = \max \{ n - \text{rg}(A) : A \in S(G) \}
\]
Graphs and Matrices

Let $S(n) = \{ A \in \mathbb{R}^{n \times n} : A^T = A \}$.

For $A \in S(n)$, let $G(A)$ be the graph with vertex set $\{1, 2, \ldots, n\}$ and edge set

$$\{ ij : 1 \leq i < j \leq n \text{ and } a_{i,j} \neq 0 \}.$$

Let

$$A = \begin{pmatrix}
1 & 2 & 0 & 2 \\
2 & 6 & 3 & 2 \\
0 & 3 & 0 & 0 \\
2 & 2 & 0 & 1
\end{pmatrix} \quad \quad G(A) = \begin{array}{c}
1 \\
2 \\
4 \\
3
\end{array}$$

Let

$$S(G) = \{ A \in S(n) : G(A) = G \} \quad \text{and} \quad M(G) = \max \{ n - \text{rg}(A) : A \in S(G) \}$$

$$\leq \quad ???$$
Graphs and Matrices

Let $S(n) = \{ A \in \mathbb{R}^{n \times n} : A^T = A \}$. For $A \in S(n)$, let $G(A)$ be the graph with vertex set $\{1, 2, \ldots, n\}$ and edge set

$$\{ij : 1 \leq i < j \leq n \text{ and } a_{i,j} \neq 0\}.$$

Let

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 6 & 3 & 2 \\ 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix} \quad G(A) = \begin{array}{cccc} 1 & 2 \\ 2 & 3 & 4 \\ 4 & 3 \\ 3 & 2 \\ \end{array}$$

Let

$$S(G) = \{ A \in S(n) : G(A) = G \} \quad \text{and}$$

$$M(G) = \max \{ n - \text{rg}(A) : A \in S(G) \} \leq ??? \quad (\sim \text{zero forcing})$$
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $F(Z)$ be defined by the following procedure.

while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$
do $Z \leftarrow Z \cup (N_G(u) \setminus Z)$
end

$F(Z) \leftarrow Z$

Definition (AIM group '08)
If $F(Z) = V(G)$, then Z is a zero forcing set of G.

$Z(G) = \min \{ |Z| : F(Z) = V(G) \}$ is the zero forcing number of G.
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while $|N_G(u) \setminus Z| = 1$ **for some** $u \in Z$
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

\begin{verbatim}
while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do
 $Z \leftarrow Z \cup (N_G(u) \setminus Z);
\end{verbatim}
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

\begin{verbatim}
while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do
 $Z \leftarrow Z \cup (N_G(u) \setminus Z)$;
end
\end{verbatim}

$\mathcal{F}(Z) \leftarrow Z$;
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

\[
\textbf{while } |N_G(u) \setminus Z| = 1 \text{ for some } u \in Z \textbf{ do }
\]

\[
| \quad Z \leftarrow Z \cup (N_G(u) \setminus Z);
\]

\[
\textbf{end}
\]

$\mathcal{F}(Z) \leftarrow Z;
\]

Z
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

\[
\text{while } |N_G(u) \setminus Z| = 1 \text{ for some } u \in Z \text{ do}
\]
\[
\quad Z \leftarrow Z \cup (N_G(u) \setminus Z);
\]
\text{end}

$\mathcal{F}(Z) \leftarrow Z$;
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

```plaintext
while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do
    $Z \leftarrow Z \cup (N_G(u) \setminus Z)$;
end
$\mathcal{F}(Z) \leftarrow Z$;
```

Z
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $F(Z)$ be defined by the following procedure.

```plaintext
while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do
    $Z \leftarrow Z \cup (N_G(u) \setminus Z)$;
end

$F(Z) \leftarrow Z$;
```

Definition (AIM group '08)

If $F(Z) = V(G)$, then Z is a zero forcing set of G.

$Z(G) = \min\{|Z| : F(Z) = V(G)\}$ is the zero forcing number of G.
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

\begin{verbatim}
while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do
 $Z \leftarrow Z \cup (N_G(u) \setminus Z)$;
end
$\mathcal{F}(Z) \leftarrow Z$;
\end{verbatim}

![Diagram of Zero Forcing](Z)
Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

\begin{verbatim}
while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do
 $Z \leftarrow Z \cup (N_G(u) \setminus Z)$;
end

$\mathcal{F}(Z) \leftarrow Z$;
\end{verbatim}

Definition (AIM group ‘08)

If $\mathcal{F}(Z) = V(G)$, then Z is a zero forcing set of G.

Zero Forcing

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

\[
\text{while } |N_G(u) \setminus Z| = 1 \text{ for some } u \in Z \text{ do } \\
\quad Z \leftarrow Z \cup (N_G(u) \setminus Z) ; \\
\text{end} \\
\mathcal{F}(Z) \leftarrow Z ;
\]

Definition (AIM group ‘08)

If $\mathcal{F}(Z) = V(G)$, then Z is a zero forcing set of G.

\[
Z(G) = \min\{ |Z| : \mathcal{F}(Z) = V(G) \}
\]

is the zero forcing number of G.
Zero Forcing
Zero Forcing

Theorem (AIM group ‘08)

Let \(Z \) be a zero forcing set of a graph \(G \).

Let \(A \in \mathcal{S}(G) \) and let \(x \in \ker(A) \).

(i) If \(x_u = 0 \) for \(u \in Z \), then \(x = 0 \).

(ii) \(M(G) \leq Z(G) \).

Proof:

(i) If \(u \in Z \) is such that \(N_G(u) \setminus Z = \{ v \} \), then \(0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v \), and hence \(x_v = 0 \).

(ii) Suppose \(n - \text{rg}(A) > |Z| \).

For \(U = \{ x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z \} \),

\[
\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U) > |Z| + (n - |Z|) - n = 0,
\]

contradicting (i).
Zero Forcing

Theorem (AIM group ‘08)

Let \(Z \) be a zero forcing set of a graph \(G \).

(i) If \(x_u = 0 \) for \(u \in Z \), then \(x = 0 \).

(ii) \(M(G) \) \(\leq \) \(Z(G) \).

Proof:

(i) If \(u \in Z \) is such that \(N_G(u) \setminus Z = \{ v \} \), then
\[
0 = (Ax)_u = \sum_{w \in V(G)} a_{uw}x_w = a_{uv}x_v,
\]
and hence \(x_v = 0 \).

(ii) Suppose \(n - \text{rg}(A) > |Z| \).

For \(U = \{ x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z \} \),
\[
\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U) > |Z| + (n - |Z|) - n = 0,
\]
contradicting (i).
Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

Proof:

(i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then $0 = (Ax)u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v$, and hence $x_v = 0$.

(ii) Suppose $n - \operatorname{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$, $\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) \cup U) > |Z| + (n - |Z|) - n = 0$, contradicting (i).
Theorem (AIM group ‘08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.

(ii) $M(G) \leq Z(G)$.
Zero Forcing

Theorem (AIM group ‘08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.

(ii) $M(G) \leq Z(G)$.
Zero Forcing

Theorem (AIM group ‘08)
Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.
(ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$,
Zero Forcing

Theorem (AIM group ‘08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.

(ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)$$
Zero Forcing

Theorem (AIM group ‘08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.

(ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u$$
Zero Forcing

Theorem (AIM group ‘08)

Let Z be a zero forcing set of a graph G.
Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.
(ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w$$
Zero Forcing

Theorem (AIM group ’08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.
(ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w} x_w = a_{u,v} x_v,$$
Zero Forcing

Theorem (AIM group ‘08)

Let \(Z \) be a zero forcing set of a graph \(G \).
Let \(A \in S(G) \) and let \(x \in \ker(A) \).

(i) If \(x_u = 0 \) for \(u \in Z \), then \(x = 0 \).

(ii) \(M(G) \leq Z(G) \).

Proof: (i) If \(u \in Z \) is such that \(N_G(u) \setminus Z = \{v\} \), then

\[
0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v,
\]

and hence \(x_v = 0 \).
Zero Forcing

Theorem (AIM group ’08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.

(ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v,$$

and hence $x_v = 0$.

(ii) Suppose $n - \rg(A) > |Z|$.

Zero Forcing

Theorem (AIM group ‘08)

*Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$. *

(i) *If $x_u = 0$ for $u \in Z$, then $x = 0$. *

(ii) *$M(G) \leq Z(G)$. *

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v,$$

and hence $x_v = 0$.

(ii) Suppose $n - \text{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$,
Zero Forcing

Theorem (AIM group ‘08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.
(ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v,$$

and hence $x_v = 0$.

(ii) Suppose $n - \text{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$,

$$\dim(\ker(A) \cap U)$$
Theorem (AIM group ’08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.

(ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v,$$

and hence $x_v = 0$.

(ii) Suppose $n - \text{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$,

$$\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U)$$
Zero Forcing

Theorem (AIM group ‘08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.

(ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v,$$

and hence $x_v = 0$.

(ii) Suppose $n - \rg(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0$ for $u \in Z\}$,

$$\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U) > |Z| + (n - |Z|) - n.$$
Zero Forcing

Theorem (AIM group ‘08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.

(ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v,$$

and hence $x_v = 0$.

(ii) Suppose $n - \rg(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$,

$$\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U) > |Z| + (n - |Z|) - n = 0,$$
Zero Forcing

Theorem (AIM group ‘08)

Let \(Z \) be a zero forcing set of a graph \(G \).
Let \(A \in S(G) \) and let \(x \in \ker(A) \).

(i) If \(x_u = 0 \) for \(u \in Z \), then \(x = 0 \).

(ii) \(M(G) \leq Z(G) \).

Proof: (i) If \(u \in Z \) is such that \(N_G(u) \setminus Z = \{v\} \), then

\[
0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v,
\]

and hence \(x_v = 0 \).

(ii) Suppose \(n - \rg(A) > |Z| \). For \(U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\} \),

\[
\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U) > |Z| + (n - |Z|) - n = 0,
\]

contradicting (i).
Zero Forcing

Theorem (AIM group ‘08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in \ker(A)$.

(i) If $x_u = 0$ for $u \in Z$, then $x = 0$.

(ii) $M(G) \leq Z(G)$.

Proof:

(i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

\[0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w}x_w = a_{u,v}x_v, \]

and hence $x_v = 0$.

(ii) Suppose $n - \text{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$,

\[
\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U) > |Z| + (n - |Z|) - n = 0,
\]

contradicting (i). \square
Zero Forcing

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11).

Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Definition

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11). Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

Definition
For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11). Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11).

Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

Definition
For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11).

Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

Definition
For a graph \(G \), let \(P(G) \) be the minimum number of disjoint induced paths \(P_1, \ldots, P_k \) in \(G \) with \(V(G) = V(P_1) \cup \ldots \cup V(P_k) \).

\[Z(G) \geq P(G) \]

with equality for forests (AIM group) and cacti (Row '11). Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

Definition

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11). Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Definition

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \cdots \cup V(P_k)$. $Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11). Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

Definition

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$. $Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11). Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Muller '03).
Zero Forcing

Definition

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11).

Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11).

Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and M"uller '03).
Zero Forcing

Definition
For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11).

Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

Definition

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11).

Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11). Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

Definition
For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$. $Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11). Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Zero Forcing

Definition
For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \cdots \cup V(P_k)$.

$Z(G) \geq P(G)$ with equality for forests (AIM group) and cacti (Row '11). Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).
Definition

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

Zero Forcing
Zero Forcing

Definition

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

- $Z(G) \geq P(G)$

 with equality for forests (AIM group) and cacti (Row ‘11).
Zero Forcing

Definition

For a graph G, let $P(G)$ be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

- $Z(G) \geq P(G)$
 with equality for forests (AIM group) and cacti (Row ‘11).
- Both parameters are computationally hard (Aazami ’08, Fallat et al. ’16, Le, Le, and Müller ’03).
Upper Bounds

Theorem (Amos, Caro, Davila, and Pepper '15)

Let G be a graph of order n, maximum degree Δ, and minimum degree at least 1.

(i) $Z(G) \leq \Delta n + 1$.

(ii) If G is connected and $\Delta \geq 2$, then $Z(G) \leq (\Delta - 2)n + 2\Delta - 1$.

Conjecture (Amos, Caro, Davila, and Pepper '15)

The only extremal graphs for (ii) are C_n, K_n, and $K_{\Delta, \Delta}$.

Theorem (GPRS '16)

This conjecture is true.
Upper Bounds

Theorem (Amos, Caro, Davila, and Pepper ‘15)

Let G be a graph of order n, maximum degree Δ, and minimum degree at least 1.

(i) $Z(G) \leq \frac{\Delta n}{\Delta + 1}$.

(ii) If G is connected and $\Delta \geq 2$, then $Z(G) \leq \frac{(\Delta - 2)n + 2}{\Delta - 1}$.
Upper Bounds

Theorem (Amos, Caro, Davila, and Pepper ’15)

Let G be a graph of order n, maximum degree Δ, and minimum degree at least 1.

(i) $Z(G) \leq \frac{\Delta n}{\Delta + 1}$.

(ii) If G is connected and $\Delta \geq 2$, then $Z(G) \leq \frac{(\Delta - 2)n + 2}{\Delta - 1}$.

Conjecture (Amos, Caro, Davila, and Pepper ’15)

The only extremal graphs for (ii) are C_n, K_n, and $K_{\Delta, \Delta}$.
Upper Bounds

Theorem (Amos, Caro, Davila, and Pepper ‘15)

Let G be a graph of order n, maximum degree Δ, and minimum degree at least 1.

(i) $Z(G) \leq \frac{\Delta n}{\Delta + 1}$.

(ii) If G is connected and $\Delta \geq 2$, then $Z(G) \leq \frac{(\Delta-2)n+2}{\Delta-1}$.

Conjecture (Amos, Caro, Davila, and Pepper ‘15)

The only extremal graphs for (ii) are C_n, K_n, and $K_{\Delta,\Delta}$.

Theorem (GPRS ‘16)

This conjecture is true.
Upper Bounds

Lemma (GR '16)

Let G be a connected graph of order n and maximum degree Δ at least 3.

If there is some set Z_0 of vertices of G such that $|Z_0| \leq \Delta - 2\Delta - 1 |F(Z_0)| + \alpha$, and $F(Z_0)$ induces a subgraph of G without isolated vertices, then $Z(G) \leq \Delta - 2\Delta - 1 n + \alpha$.
Let G be a connected graph of order n and maximum degree Δ at least 3.

Lemma (GR ‘16)

Let G be a connected graph of order n and maximum degree Δ at least 3.
Lemma (GR ‘16)

Let G be a connected graph of order n and maximum degree Δ at least 3. If there is some set Z_0 of vertices of G such that

$$|Z_0| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_0)| + \alpha,$$

and $\mathcal{F}(Z_0)$ induces a subgraph of G without isolated vertices,
Upper Bounds

Lemma (GR ‘16)

Let G be a connected graph of order n and maximum degree Δ at least 3. If there is some set Z_0 of vertices of G such that

$$|Z_0| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_0)| + \alpha,$$

and $\mathcal{F}(Z_0)$ induces a subgraph of G without isolated vertices, then

$$Z(G) \leq \frac{\Delta - 2}{\Delta - 1} n + \alpha.$$
Upper Bounds

Proof:

For some $i \geq 0$, let Z_i be such that $|Z_i| \leq \Delta - 2\Delta - 1 |F(Z_i)| + \alpha$.

Let $u \in F(Z_i)$ be such that $\emptyset \neq NG(u) \subseteq F(Z_i) = \{v\} \cup NG$.

If $Z_{i+1} = Z_i \cup NG$, then $|Z_{i+1}| = |Z_i| + |NG|$, $|F(Z_{i+1})| \geq |F(Z_i)| + |NG| + 1$, which implies $|Z_{i+1}| \leq \Delta - 2\Delta - 1 |F(Z_{i+1})| + \alpha$.

Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$.
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

If $Z_{i+1} = Z_i \cup N$, then

$$|Z_{i+1}| = |Z_i| + |N|,$$

and

$$|\mathcal{F}(Z_{i+1})| \geq |\mathcal{F}(Z_i)| + |N| + 1,$$

which implies

$$|Z_{i+1}| \leq \Delta - 2 \Delta - 1 |\mathcal{F}(Z_{i+1})| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i)$$
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$
Upper Bounds

Proof: For some \(i \geq 0 \), let \(Z_i \) be such that

\[
|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.
\]

\(\mathcal{F}(Z_i) \neq V(G) \). Let \(u \in \mathcal{F}(Z_i) \) be such that

\[
\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.
\]
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$
Upper Bounds

Proof: For some \(i \geq 0 \), let \(Z_i \) be such that

\[
|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.
\]

If \(\mathcal{F}(Z_i) \neq V(G) \). Let \(u \in \mathcal{F}(Z_i) \) be such that

\[
\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.
\]

If \(Z_{i+1} = Z_i \cup N \), then \(|Z_{i+1}| = |Z_i| + |N| \),
Upper Bounds

Proof: For some \(i \geq 0 \), let \(Z_i \) be such that

\[
|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.
\]

\(\mathcal{F}(Z_i) \neq V(G) \). Let \(u \in \mathcal{F}(Z_i) \) be such that

\[
\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.
\]

If \(Z_{i+1} = Z_i \cup N \), then \(|Z_{i+1}| = |Z_i| + |N| \), \(|\mathcal{F}(Z_{i+1})| \geq |\mathcal{F}(Z_i)| + |N| + 1 \), and
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$

If $Z_{i+1} = Z_i \cup N$, then $|Z_{i+1}| = |Z_i| + |N|$, $|\mathcal{F}(Z_{i+1})| \geq |\mathcal{F}(Z_i)| + |N| + 1$, and $|N| \leq \Delta - 2$.
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$

If $Z_{i+1} = Z_i \cup N$, then $|Z_{i+1}| = |Z_i| + |N|$, $|\mathcal{F}(Z_{i+1})| \geq |\mathcal{F}(Z_i)| + |N| + 1$, and $|N| \leq \Delta - 2$, which implies

$$|Z_{i+1}| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_{i+1})| + \alpha.$$
Upper Bounds

Proof: For some $i \geq 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$

If $Z_{i+1} = Z_i \cup N$, then $|Z_{i+1}| = |Z_i| + |N|$, $|\mathcal{F}(Z_{i+1})| \geq |\mathcal{F}(Z_i)| + |N| + 1$, and $|N| \leq \Delta - 2$, which implies

$$|Z_{i+1}| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_{i+1})| + \alpha.$$
To obtain (ii) of the Theorem of Amos et al. choose

\[Z_0 = N_G[u] \setminus \{v\} \]

for some vertex \(u \) and \(v \in N_G(u) \).
To obtain (ii) of the Theorem of Amos et al. choose

$$Z_0 = N_G[u] \setminus \{v\}$$

for some vertex u and $v \in N_G(u)$.

(ii) of the Theorem of Amos et al. implies (i), because

$$\frac{(\Delta - 2)n + 2}{\Delta - 1} \leq \frac{\Delta n}{\Delta + 1}$$

for $n \geq \Delta + 1$.
Upper Bounds

Theorem (GR ‘16)

If G is a connected graph of order n and maximum degree Δ at least 3, then

$$Z(G) \leq \frac{\Delta - 2}{\Delta - 1} n$$
Upper Bounds

Theorem (GR ‘16)

If G is a connected graph of order n and maximum degree Δ at least 3, then

$$Z(G) \leq \frac{\Delta - 2}{\Delta - 1} n$$

if and only if $G \not\in \{K_{\Delta+1}, K_{\Delta,\Delta}, K_{\Delta-1,\Delta}\}$
Upper Bounds

Theorem (GR ‘16)

If G is a connected graph of order n and maximum degree Δ at least 3, then

\[Z(G) \leq \frac{\Delta - 2}{\Delta - 1} n \]

if and only if $G \notin \{K_{\Delta+1}, K_{\Delta,\Delta}, K_{\Delta-1,\Delta}\} \cup \{G_1, G_2\}$, where G_1 and G_2 are the following two graphs.

![Graph 1](image1.png)

![Graph 2](image2.png)
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$):
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2$.
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with
\[
|\mathcal{F}(Z_0)| \geq 2|Z_0|.
\]

$\delta(G) \geq 2$.

![Graph with labeled vertices and edges]
Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2$.

\[\text{Diagram showing a graph with two circles and several connected nodes.} \]
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2$.

Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2$.

![Graph diagram]
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$
Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2$.

![Diagram](image.png)
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2$.

![Graph Diagram]
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$
Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2$.

![Graph](image-url)
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|F(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2$.

\begin{center}
\begin{tikzpicture}
 \node[fill] (A) at (0,0) {};
 \node[fill] (B) at (1,0) {};
 \node[draw] (C) at (2,0) {};
 \node[fill] (D) at (3,0) {};
 \node[draw] (E) at (4,0) {};
 \node[fill] (F) at (5,0) {};
 \node[draw] (G) at (6,0) {};
 \node[fill] (H) at (7,0) {};
 \node[draw] (I) at (8,0) {};
 \node[fill] (J) at (9,0) {};
 \node[draw] (K) at (10,0) {};
 \node[fill] (L) at (11,0) {};
 \node[draw] (M) at (12,0) {};
 \node[fill] (N) at (13,0) {};
 \node[draw] (O) at (14,0) {};
 \node[fill] (P) at (15,0) {};
 \node[draw] (Q) at (16,0) {};
 \node[fill] (R) at (17,0) {};
 \node[draw] (S) at (18,0) {};
 \node[fill] (T) at (19,0) {};
 \node[draw] (U) at (20,0) {};
 \node[fill] (V) at (21,0) {};
 \node[draw] (W) at (22,0) {};
 \node[fill] (X) at (23,0) {};
 \node[draw] (Y) at (24,0) {};
 \node[fill] (Z) at (25,0) {};
 \node[draw] (AA) at (26,0) {};

 \draw (A) -- (B);
 \draw (B) -- (C);
 \draw (C) -- (D);
 \draw (D) -- (E);
 \draw (E) -- (F);
 \draw (F) -- (G);
 \draw (G) -- (H);
 \draw (H) -- (I);
 \draw (I) -- (J);
 \draw (J) -- (K);
 \draw (K) -- (L);
 \draw (L) -- (M);
 \draw (M) -- (N);
 \draw (N) -- (O);
 \draw (O) -- (P);
 \draw (P) -- (Q);
 \draw (Q) -- (R);
 \draw (R) -- (S);
 \draw (S) -- (T);
 \draw (T) -- (U);
 \draw (U) -- (V);
 \draw (V) -- (W);
 \draw (W) -- (X);
 \draw (X) -- (Y);
 \draw (Y) -- (Z);

\end{tikzpicture}
\end{center}
Upper Bounds

Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$

$\leq $
Proof (for $\Delta = 3$ and $g \geq 5$): We need to find a set Z_0 with

$$|\mathcal{F}(Z_0)| \geq 2|Z_0|.$$

$\delta(G) \geq 2.$

$\#\bigcirc \leq \#\Box$
Upper Bounds

Conjecture (GR ‘16)

If G is a connected graph of order n and maximum degree 3, then

$$Z(G) \leq \frac{1}{3}n + 2.$$
Upper Bounds

Conjecture (GR ‘16)

If G is a connected graph of order n and maximum degree 3, then

$$Z(G) \leq \frac{1}{3}n + 2.$$

$$Z(K_{3,3}) = 4 = \frac{1}{3} \cdot 6 + 2$$
Upper Bounds

Conjecture (GR ‘16)

If G is a connected graph of order n and maximum degree 3, then

$$Z(G) \leq \frac{1}{3} n + 2.$$

$$Z(K_{3,3}) = 4 = \frac{1}{3} \cdot 6 + 2$$

Theorem (GR ‘16)

If G is a connected graph of order n, maximum degree 3, and girth at least 5, then

$$Z(G) \leq \frac{n}{2} - \Omega \left(\frac{n}{\log n} \right).$$
Upper Bounds

Proof (sketch):

○ < # □
Upper Bounds

Proof (sketch):

\[\#\bigcirc < \#\Box\]
Upper Bounds

Proof (sketch):
Proof (sketch):
Upper Bounds

Proof (sketch):
Upper Bounds

Proof (sketch):

![Diagram](image-url)
Upper Bounds

Proof (sketch):

\[\# \bigcirc < \# \square \]
Upper Bounds

Proof (sketch):

\[\#\bigcirc < \#\square \]
Upper Bounds

Proof (sketch):

#\bigcirc < #\Box
Upper Bounds

Proof (sketch): If no such subgraph of order $O(\log n)$ exists, then
Proof (sketch): If no such subgraph of order $O(\log n)$ exists, then \[\cdots\]
Upper Bounds

Proof (sketch): If no such subgraph of order $O(\log n)$ exists, then...
Upper Bounds

Proof (sketch): If no such subgraph of order $O(\log n)$ exists, then...
Upper Bounds

Proof (sketch): If no such subgraph of order $O(\log n)$ exists, then...
Proof (sketch): If no such subgraph of order $O(\log n)$ exists, then...
Upper Bounds

Proof (sketch): If no such subgraph of order $O(\log n)$ exists, then G has more than $2^{\log_2(n)}$ vertices.
Proof (sketch): If no such subgraph of order $O(\log n)$ exists, then G has more than $2^{\log_2(n)}$ vertices. □
Upper Bounds

Theorem (GR ‘16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}.$$
Upper Bounds

Theorem (GR ‘16)

If G *is a graph, then*

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}.$$

Proof:
Upper Bounds

Theorem (GR ‘16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}.$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G.

Upper Bounds

Theorem (GR ‘16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{l \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in l} N_G[v] \right|^{-1}. $$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G. Let Z be the set of those vertices u_i such that u_i is not the unique neighbor within $\{u_i, \ldots, u_n\}$ of some vertex u_j with $j < i$.
Upper Bounds

Theorem (GR ‘16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in N_{G_i}^{(u)}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}.$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G.

Let Z be the set of those vertices u_i such that u_i is not the unique neighbor within $\{u_i, \ldots, u_n\}$ of some vertex u_j with $j < i$.

Z is a zero forcing set of G.
Upper Bounds

Theorem (GR ‘16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}.$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G.

Let Z be the set of those vertices u_i such that u_i is not the unique neighbor within $\{u_i, \ldots, u_n\}$ of some vertex u_j with $j < i$.

Z is a zero forcing set of G. $Z(G) \leq \mathbb{E}[|Z|]$.

Theorem (GR ‘16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{l \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in l} N_G[v] \right|^{-1}.$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G.

Let Z be the set of those vertices u_i such that u_i is not the unique neighbor within $\{u_i, \ldots, u_n\}$ of some vertex u_j with $j < i$.

Z is a zero forcing set of G. $Z(G) \leq \mathbb{E}[|Z|]$. Inclusion-exclusion.
Upper Bounds

Theorem (GR ‘16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{\text{NG}(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} \text{NG}[v] \right|^{-1}.$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G. Let Z be the set of those vertices u_i such that u_i is not the unique neighbor within $\{u_i, \ldots, u_n\}$ of some vertex u_j with $j < i$. Z is a zero forcing set of G. $Z(G) \leq \mathbb{E}[|Z|]$. Inclusion-exclusion. \qed
Corollary (GR ‘16)

If G is a r-regular graph of order n and girth at least 5, then

$$Z(G) \leq \left(\prod_{i=1}^{r} \left(1 - \frac{1}{ri + 1} \right) \right)^n$$
Upper Bounds

Corollary (GR ‘16)

If G is a r-regular graph of order n and girth at least 5, then

$$Z(G) \leq \left(\prod_{i=1}^{r} \left(1 - \frac{1}{ri + 1} \right) \right) n = \left(1 - \frac{H_r}{r} \right) n + O \left(\left(\frac{H_r}{r} \right)^2 \right) n.$$

$$H_r = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{r} \sim \ln r$$
Lower Bounds

Theorem (AIM group)

If G *is a graph, then* $Z(G) \geq \delta(G)$.

Theorem (Kenter and Davila '14)

Let G be a graph of minimum degree δ and girth g.

(i) If $\delta \geq 3$ and $g \geq 4$, then $Z(G) \geq \delta + 1$.

(ii) If $\delta \geq 2$ and $g \geq 5$, then $Z(G) \geq 2\delta - 2$.

Conjecture (Kenter and Davila '14)

If $\delta \geq 2$ and $g \geq 3$, then $Z(G) \geq (g-2)(\delta-2) + 2$.
Lower Bounds

Theorem (AIM group)

If G is a graph, then $Z(G) \geq tw(G) \geq \delta(G)$.

Theorem (Kenter and Davila '14)

Let G be a graph of minimum degree δ and girth g.

(i) If $\delta \geq 3$ and $g \geq 4$, then $Z(G) \geq \delta + 1$.

(ii) If $\delta \geq 2$ and $g \geq 5$, then $Z(G) \geq 2\delta - 2$.

Conjecture (Kenter and Davila '14)

If $\delta \geq 2$ and $g \geq 3$, then $Z(G) \geq (g - 2)(\delta - 2) + 2$.

Lower Bounds

Theorem (AIM group, Aazami '08)

If G is a graph, then $Z(G) \geq pw(G) \geq tw(G) \geq \delta(G)$.

Theorem (Kenter and Davila '14)

Let G be a graph of minimum degree δ and girth g.

(i) If $\delta \geq 3$ and $g \geq 4$, then $Z(G) \geq \delta + 1$.

(ii) If $\delta \geq 2$ and $g \geq 5$, then $Z(G) \geq 2\delta - 2$.

Conjecture (Kenter and Davila '14)

If $\delta \geq 2$ and $g \geq 3$, then $Z(G) \geq (g - 2)(\delta - 2) + 2$.

Lower Bounds

Theorem (AIM group, Aazami '08)

If G is a graph, then $Z(G) \geq pw(G) \geq tw(G) \geq \delta(G)$.

Theorem (Kenter and Davila '14)

Let G be a graph of minimum degree δ and girth g.

1. If $\delta \geq 3$ and $g \geq 4$, then $Z(G) \geq \delta + 1$.
2. If $\delta \geq 2$ and $g \geq 5$, then $Z(G) \geq 2\delta - 2$.
3. Conjecture: If $\delta \geq 2$ and $g \geq 3$, then $Z(G) \geq \left(g - 2 \right) (\delta - 2) + 2$.

Lower Bounds

Theorem (AIM group, Aazami ’08)

*If G is a graph, then $Z(G) \geq pw(G) \geq tw(G) \geq \delta(G)$.***

Theorem (Kenter and Davila ‘14)

Let G be a graph of minimum degree δ and girth g.

1. If $\delta \geq 3$ and $g \geq 4$, then $Z(G) \geq \delta + 1$.
2. If $\delta \geq 2$ and $g \geq 5$, then $Z(G) \geq 2\delta - 2$.

Conjecture (Kenter and Davila ’14)

If $\delta \geq 2$ and $g \geq 3$, then $Z(G) \geq (g - 2)(\delta - 2) + 2$.

22 / 26
Lower Bounds

<table>
<thead>
<tr>
<th>Theorem (AIM group, Aazami '08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G is a graph, then $Z(G) \geq pw(G) \geq tw(G) \geq \delta(G)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Kenter and Davila '14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be a graph of minimum degree δ and girth g.</td>
</tr>
<tr>
<td>(i) If $\delta \geq 3$ and $g \geq 4$, then $Z(G) \geq \delta + 1$.</td>
</tr>
<tr>
<td>(ii) If $\delta \geq 2$ and $g \geq 5$, then $Z(G) \geq 2\delta - 2$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjecture (Kenter and Davila '14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $\delta \geq 2$ and $g \geq 3$, then $Z(G) \geq (g - 2)(\delta - 2) + 2$.</td>
</tr>
</tbody>
</table>
For $g \geq 7$ and $\delta \geq \delta_g$, the conjecture follows using

- $Z(G) \geq tw(G)$ and

- a Moore-type lower bound on $tw(G)$
 (Chandrana and Subramanian ‘05).
For $g \geq 7$ and $\delta \geq \delta_g$, the conjecture follows using

- $Z(G) \geq tw(G)$ and
- a Moore-type lower bound on $tw(G)$ (Chandrana and Subramanian ‘05).

Theorem (GR ‘16)

The conjecture holds for $g \in \{4, 5, 6\}$.
Hereditary Equality with $P(G)$

Recall that $Z(G) \geq P(G)$ with equality for forests and cacti.
Hereditary Equality with $P(G)$

Recall that $Z(G) \geq P(G)$ with equality for forests and cacti, which form hereditary classes of graphs.
Hereditary Equality with $P(G)$

Recall that $Z(G) \geq P(G)$ with equality for forests and cacti, which form hereditary classes of graphs.

$$\mathcal{ZP} = \{ G : Z(H) = P(H) \text{ for every induced subgraph } H \text{ of } G \}$$
Hereditary Equality with $P(G)$

Recall that $Z(G) \geq P(G)$ with equality for forests and cacti, which form hereditary classes of graphs.

$$\mathcal{ZP} = \{ G : Z(H) = P(H) \text{ for every induced subgraph } H \text{ of } G \}$$

$\Theta(2, 3, 4)$
Hereditary Equality with $P(G)$

Recall that $Z(G) \geq P(G)$ with equality for forests and cacti, which form hereditary classes of graphs.

$$\mathcal{ZP} = \{ G : Z(H) = P(H) \text{ for every induced subgraph } H \text{ of } G \}$$

Folklore

A graph is a cactus if and only if it is \mathcal{F}-free for

$$\mathcal{F} = \{ K_4 \} \cup \{ \Theta(\ell_1, \ell_2, \ell_3) : \ell_1, \ell_2, \ell_3 \in \mathbb{N} \text{ and } \ell_2, \ell_3 \geq 2 \}.$$
Hereditary Equality with $P(G)$

Theorem (GPRS ‘16)

If G is a graph such that every cycle of G is induced, then the following statements are equivalent.

(i) $G \in \mathcal{ZP}$.

(ii) G is a cactus.

(iii) G is \mathcal{F}-free.
The end

Thank you for your attention!