Misère Geography and Vertex NimG are PSPACE-hard

Gabriel Renault

March 19th, 2015
Impartial combinatorial games

An impartial combinatorial game is a game:

- with two players
- with complete information
- where there is no chance
- finite (acyclic)
- where both players always have the same sets of moves
Impartial combinatorial games

An impartial combinatorial game is a game:

- with two players
- with complete information
- where there is no chance
- finite (acyclic)
- where both players always have the same sets of moves

We consider two winning conventions:

- in normal version, the player who plays the last move wins
- in misère version, the player who plays the last move loses
GEOGRAPHY
A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
A directed graph \(G \) with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
Geography

A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
Geography

A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
A directed graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and delete the previous vertex.

The game can also be played on an undirected graph.
Complexity of Geography

Under the normal convention:

- On directed graphs, the problem is PSPACE-complete, even when played on planar bipartite graphs with maximum degree 3. (Lichtenstein, Sipser, 1979)
- On undirected graphs, the problem is polynomial. (Fraenkel, Scheinerman, Ullman, 1993)
Complexity of Geography

Under the normal convention:

- On directed graphs, the problem is PSPACE-complete, even when played on planar bipartite graphs with maximum degree 3. (Lichtenstein, Sipser, 1979)
- On undirected graphs, the problem is polynomial. (Fraenkel, Scheinerman, Ullman, 1993)

Under the misère convention?
Directed case

Misère Geography and Vertex NimG are PSPACE-hard
Directed case

Misère Geography and Vertex NimG are PSPACE-hard.
The gadgets

Gabriel Renault Misère Geography and Vertex NimG are PSPACE-hard
The gadgets
The gadgets

Gabriel Renault Misère Geography and Vertex NimG are PSPACE-hard
An example

![Graph Example]

Gabriel Renault Misère Geography and Vertex NimG are PSPACE-hard
An example
Losing moves are losing

We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
Losing moves are losing

We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.

Gabriel Renault Misère Geography and Vertex NimG are PSPACE-hard
Losing moves are losing

We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
Losing moves are losing

We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
Losing moves are losing

We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
Losing moves are losing

We need to prove that:

- A move from \(u \) to \(u' \) is losing.
- A move from \(v \) to \(uv_7 \) is losing.
- If \(v \) has been played, the move from \(u \) to \(uv_1 \) is losing.
- If the move from \(u \) to \(v \) is losing, then the move from \(u \) to \(uv_1 \) is losing.
- If the move from \(u \) to \(v \) is winning, then the move from \(u \) to \(uv_1 \) is winning.
We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
We need to prove that:
- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
Losing moves are losing

We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
Losing moves are losing

We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
Losing moves are losing

We need to prove that:

- A move from \(u \) to \(u' \) is losing.
- A move from \(v \) to \(uv_7 \) is losing.
- If \(v \) has been played, the move from \(u \) to \(uv_1 \) is losing.
- If the move from \(u \) to \(v \) is losing, then the move from \(u \) to \(uv_1 \) is losing.
- If the move from \(u \) to \(v \) is winning, then the move from \(u \) to \(uv_1 \) is winning.
Losing moves are losing

We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
Losing moves are losing

We need to prove that:

- A move from u to u' is losing.
- A move from v to uv_7 is losing.
- If v has been played, the move from u to uv_1 is losing.
- If the move from u to v is losing, then the move from u to uv_1 is losing.
- If the move from u to v is winning, then the move from u to uv_1 is winning.
Under the normal convention:

- On directed graphs, the problem is \textsc{PSPACE}-complete, even when played on planar bipartite graphs with maximum degree 3. (Lichtenstein, Sipser, 1979)
- On undirected graphs, the problem is polynomial. (Fraenkel, Scheinerman, Ullman, 1993)

Under the misère convention:

- On directed graphs, the problem is \textsc{PSPACE}-complete, even when played on planar bipartite graphs with maximum degree 4.
- On undirected graphs, the problem is \textsc{PSPACE}-complete, even when played on planar graphs with maximum degree 5.
Vertex NimG
A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
Vertex NimG-MR

A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
Vertex NimG-MR

A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to slide the token to an out-neighbour and remove some weight from this out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to remove some weight from the current vertex and slide the token to an out-neighbor.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to remove some weight from the current vertex and slide the token to an out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to remove some weight from the current vertex and slide the token to an out-neighbour.

All weights must remain non-negative integers.
A weighted graph G with a token on a vertex.

A move is to remove some weight from the current vertex and slide the token to an out-neighbour.

All weights must remain non-negative integers.
Complexity of Vertex NimG

Under the normal convention:

- On the MR version, the problem is \textsc{pSpace}-hard, even when played on planar graphs with maximum degree 3. (Burke, George, 2011)
- On the RM version, the problem is polynomial. (Duchêne, R., 2014)
Complexity of Vertex NimG

Under the normal convention:

- On the MR version, the problem is \textbf{PSPACE}\text{-hard}, even when played on planar graphs with maximum degree 3. (Burke, George, 2011)
- On the RM version, the problem is polynomial. (Duchêne, R., 2014)

Under the misère convention?
Gabriel Renault

Misère Geography and Vertex NimG are \textsc{PSPACE}-hard.
Gabriel Renault Misère Geography and Vertex NimG are PSPACE-hard
Misère Geography and Vertex NimG are PSPACE-hard
RM Gadgets

Misère Geography and Vertex NimG are \textsc{PSPACE}-hard.
Example

Misère Geography and Vertex NimG are PSPACE-hard.
Example

Gabriel Renault Misère Geography and Vertex NimG are PSPACE-hard
Complexity of \textsc{Vertex NimG}

Under the normal convention:

- On the MR version, the problem is \texttt{PSPACE}-hard, even when played on planar graphs with maximum degree 3. (Burke, George, 2011)
- On the RM version, the problem is polynomial. (Duchêne, R., 2014)

Under the misère convention:

- On the MR version, the problem is \texttt{PSPACE}-hard, even when played on planar graphs with maximum degree 4.
- On RM version, the problem is \texttt{PSPACE}-hard, even when played on planar graphs with maximum degree 3.
What is the complexity of misère Geography on bipartite undirected graphs?

What is the complexity of Vertex NimG-MR on bipartite weighted graphs?

What about replacing Nim with another game?
Questions?

Thank you.