Modeling and verification techniques for
incremental development of UML architectures

Thanh-Liem Phan

Ecole des mines d’Ales, LGI2P
Parc Scientifique Georges Besse, 30035 Nimes cedex 1, France
phanliem@soict.hut.edu.vn
http://wuw.mines-ales.fr

Abstract. Our goal is to assist system architectural model development
by providing techniques and tools to early detect specification and de-
sign errors. The models being developed deal with behavioral aspects of
reactive systems: we wonder whether liveness properties are preserved
during the model developments. For that purpose, we propose incre-
mental modeling operations supported by formal relations to compare
increments. The chosen relations are based on the conformance relation
formally defined on labeled transition systems.

Keywords: incremental construction, architectures, UML, verification

1 Problems and objectives

We are interested in the development of architectural models of critical reac-
tive systems expressed as assemblies of UML components. In order to specify
and design architectures and behaviors, we advocate the use of an incremental
development approach and model evaluations during the development process.

Refinement techniques offer several benefits. In particular, they integrate
formal developments into the design and implementation process instead of con-
ducting them in parallel, which reduces costs and improves consistency. However,
classical refinement techniques do not allow us to follow an Agile method in which
requirements are not only refined but also extended in order to offer new services
or new functions. Consequently, they must start from initial abstract specifica-
tions which cover the whole system. This has two drawbacks: initial models are
tricky to design; concrete implementations arrive lately which does not provide
rapid feedback to clients and increases the stress of development teams.

The incremental development approach aims at responding to the limitations
above by integrating both refinement and extension techniques: initial specifi-
cations can be partial; concrete implementation can be provided quickly which
means feedbacks to clients are considered early. It appears that there isn’t any
technique that formally support the incremental construction of UML models,
especially for reactive systems. The reactive properties are formalized by live-
ness properties (if a system is solicited on specific events, will it respond by the
expected actions?). The verifications that we propose are conducted by binary

2 Thanh-Liem Phan

relations between models to know if the second one is actually a refinement,
an extension, or an increment of the first one. All these relations guarantee
the preservation of liveness properties. We propose a framework, IDCM [7] (In-
cremental Development of Conforming Models), in order to verify the above
relations between UML models (state machines or composite structures).

2 Proposal: incremental construction of UML
architectures

The proposed incremental construction approach for developing architectures
in UML consists in informal aspects and formal aspects. Informal aspects cover
the step by step development of architectures using UML notations. Formal
aspects mean that software architects can compare at each development step the
obtained model with respect to its previous step. Formal semantics that we have
chosen is LTS (Labeled Transition Systems). In our incremental construction
approach, informal aspect is realized by the toolkit TOPCASED [4], while formal
aspect is implemented by our tool IDCM [7]. The overview of this approach is
shown in Fig 1.

Modelling UML architectures using TopCased Verifying architectures using IDCM
partial complete
abstract| Freeof deadlock
Free of criical livelock Mg My Crer Mo My Cexr Mg
<<extend >>
M1ﬂﬂe M,] M1*:|
A Al My Lgee M3 My Csyp M5
AT <<refine > << substifute > | T<< refine >>
| 1 refine ; "
\ g ! My Ciye M}
M, = My —
AT
2 M5$:|— M1$:| M3 Ceyr My
Q Modelling intents Model verifications
<<refine > X A
: <<increment > & & I
N A A
£] << refine 531 << extend >3] <<increment >4 << subsiitute >
M; ! ! 4 X
£] B B B B
detailed M’; B refinesA Bextends A B incrementsA B substitutes A | pags Fail

Fig. 1. Incremental construction approach of UML architectures.

The incremental construction of an architecture starts from a first model
which is verified as being deadlock-free and without critical live-locks. The model
is developed by adding, substituting, splitting components or reconfiguring archi-
tectures. In order to realize this approach, we consider two problems: i) tech-
niques for the construction of UML architectures, and ii) semantics
and evaluations of UML architectures. Evaluations are performed through
the preorders shown in Fig. 1. We present the conformance relations proposed
in [2] and introduce the should-testing preorder, which support compositional
reasoning in software architecture, as follows.

Definition 1. Let P and Q be two components and A the set of all operations
of P and Q:

Incremental modeling and verification of UML architectures 3

— Tr(P) is the set of traces of P. A trace is a partial observable execution.

Q@ conf P (Q conforms to P) if for all o € Tr(P), for all A C A, P

must accept A after 0 = @ must accept A after o.

— P Ly Q (Q extends P) if Tr(P) C Tr(Q) and Q conf P.

— P Crep Q (Q reduces P) if Tr(Q) C Tr(P) and Q conf P.

— P Ly Q (Q increments P) if for any I such that I conf Q, I conf P.

P Crer Q (Q refines P) if P Crep @ and P Ty Q.

— P Cap Q (Q can substitute P) if for all components t describing a test, P
should accept t = @ should accept ¢.

P must accept A after o refers to the set of sets of actions that P must accept
after a trace o [2]. If @ conf P, then @ is more deterministic than P and all
liveness properties of P are satisfied by Q. P should accept ¢ implies every
reachable state of P||t (P and t are executed concurrently) is required to be
on a path to success [9]. If P Cgyp Q, then P Cpep @ and moreover P can be
replaced by @ in any hiding and parallel composition context.

In the case of substitution of components, none of the extension or refinement
relations between the new component and the substituted component ensures
the conformance of architectures. Then, we select the should-testing relation [1,
9], a congruence relation stronger than the refinement relation.

We give a simple example for illustrating the benefits of Cg, compare with
Cexr- Consider two components C; and C5 in Fig. 2. We have C; Ty Cy but
when we substitute C; by C3 in an architecture, we have the unwanted result
Ay Zexr Aa. By using the relation Cg,p, we detect that C7 Zgyp Co.

A
! G £ B a| &
@ o |
o— 0 R LIy
/b
A,
i T, [° e
T oy &)

Fig. 2. Cl EEXT CQ but Al zgx‘r AQ.

{a}

2.1 Techniques for construction of UML architectures

In our approach, architectures can be developed following two axes: the vertical
axis represents the level of abstraction, whereas the horizontal axis represents
the level of requirements coverage. Cger is used for vertical techniques, Ceyr is
chosen for horizontal techniques, while C,y¢ is a combination of both.

Vertical techniques. The construction of architectures along the vertical axis
does not change the functionality of the system in terms of mandatory offered
or required services, but the level of abstraction of the description. We present
here some of these techniques:

4 Thanh-Liem Phan

— Refinement techniques (along the downward direction):

o Refinement solving to find a component satisfying constraints to develop
an architecture with reduced services. Let C' a component to be refined
using an existing component C;. Refinement solving consists in develop-
ing or finding a component X and an architectural configuration f such
that A := f(Cy, X) satisfies C' Crer A.

e Refine substitution to replace components in an architecture by refined
ones. For an architecture A := f(Ch,...,C;, ...,Cy), refine substitution
consists in finding a component C/ such that Ay := f(C1,...,CL,...,Cy)
satisfies Ay Cger Ao.

— Abstraction techniques (along the upward direction):

e Abstraction solving to find components satisfying constraints to obtain
an architecture more abstract. Let C' a component to be abstracted using
an existing component Cy. Abstraction solving consists in developing or
finding a component X and an architectural configuration f such that
A:= f(Cq, X) satisfies A Cgee C.

o Abstract substitution to replace components in an architecture by other
abstract ones.

Horizontal techniques. The construction of architectures along the horizontal
axis does not change the level of abstraction of the model but involves the
modification of behavioral specifications that can be realized through the offered
and required services and the interactions with the environment. Main horizontal
techniques are:

— Extension techniques, whose main modeling operations are:

e Extension solving to find components which satisfy constraints to de-
velop an architecture offering more services. For an architecture A; :=
f(Ch,...,Cy), extension solving consists in finding g,C7,...,C} such

that Ay := g(C1,...,Cl)) satisfies Ay Ceer As.

e FEaxtension substitution to replace a component by another one which
satisfies constraints to obtain an architecture offering more services. For
Ap = f(Ch,...,Cy,y ..., Cy), extensive substitution consists in finding a
component C! such that As := f(Cy,...,Cl, ..., C,) satisfies A1 Ceyr
As.

— Restriction techniques, whose modeling operations are restriction solving
and restriction substitution. These techniques are the opposite of extension
techniques and result in removing some behaviors or reducing interfaces.

2.2 Semantics and evaluation of UML models

To analyze components and architectures, their formal semantics need to be
defined. We have automated two transformations of models developed using the
Topcased framework [4]: the transformation of UML state machines into LTS and
the transformation of UML architectures in intermediate specifications defined
by synchronization vectors from which LTS are automatically generated using
the CADP toolbox [5].

Incremental modeling and verification of UML architectures 5

In order to evaluate UML models, designers choose the appropriate relation
(among extension, refinement, increment, and substitution) according to the
modeling relationship expressed in the component diagram. In case of failures,
the verdict is expressed by refusal sets given after a sequence of interactions.
Then, designers can correct their models and continue the incremental develop-
ment. Experiments about modeling, transformation and conformance analyses
have been conducted on several case studies.

3 Conclusion

We have developed a JAVA tool allowing LTS transformation and verification
of UML models. The value of the incremental development approach is to offer
a compromise between pragmatic approaches such as Agile development, and
formal approaches such as method B.

The contribution of this work is twofold: i) providing evaluation means asso-
ciated to specialization and realization UML relationships; and ii) supporting a
substitution relation between UML components.

References

1. Ed Brinksma, Arend Rensink, and Walter Vogler. Fair Testing. In Scott Smolka,
editor, CONCUR ’95: Concurrency Theory, volume 962, pages 313—-327. Springer-
Verlag, August 1995.

2. Ed Brinksma and Giuseppe Scollo. Formal Notions of Implementation and Con-
formance in LOTOS. Technical report, Twente University of technology, Enschede,
December 1986.

3. Anne-Lise Courbis, Thomas Lambolais, Hong-Viet Luong, Thanh-Liem Phan,
Christelle Urtado, Sylvain Vauttier, et al. A formal support for incremental be-
havior specification in agile development. Proceedings of SEKE 2012, 2012.

4. Patrick Farail, Pierre Gaufillet, Agusti Canals, Christophe Le Camus, David Sci-
amma, Pierre Michel, Xavier Crégut, and Marc Pantel. The TOPCASED project:
a toolkit in open source for critical aeronautic systems design. Embedded Real Time
Software (ERTS), 2006.

5. Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2010:
a toolbox for the construction and analysis of distributed processes. In LNCS,
volume 6605 of LNCS, pages 372-387. Springer-Verlag, March 2011.

6. Guy Leduc. A framework based on implementation relations for implementing
LOTOS specifications. Computer Networks and ISDN Systems, 25(1):23-41, August
1992.

7. Hong-Viet Luong, Anne-Lise Courbis, Thomas Lambolais, and Thanh-Liem Phan.
IDCM:un outil d’analyse de composants et d’architectures dédié a la construction
incrémentale. In 11émes Journées Francophones sur les Approches Formelles dans
[’Assistance au Développement de Logiciels, pages 50-53, January 2012.

8. Hong-Viet Luong, Thomas Lambolais, and Anne-Lise Courbis. Implementation of
the Conformance Relation for Incremental Development of Behavioural Models.
In Krzysztof Czarnecki, editor, MoDELS 2008, volume 5301/2009 of LNCS, pages
356-370. Springer-Verlag, 2008.

9. A. Rensink and W. Vogler. Fair testing. Information and Computation, 205(2):125—
198, 2007.

