Adaptation of an Executed Model
and its Application to State Machines

Samson Pierre

University of Pau / LIUPPA research laboratory,
Avenue de I’Université, 64012 Pau, France
samson.pierre@univ-pau.fr
http://www.pauware.com/

Abstract. The execution of models is an important sub-part of the
MDE (Model-Driven Engineering) field while the model-based software
adaptation issue has gained more and more interest in the last few years.
My Ph.D. works lean on the convergence of these two key aspects, giving
rise to a further research question: how to deal with the adaptation of
executed models? In that context, I am studying the case of state ma-
chines that are prominent examples of models able to be executed and
for which adaptation scenarios might be sketched.

Keywords: MDE, model execution, adaptation, UML state machines

1 Problem of interest

The execution of models is an important topic for the MDE (Model-Driven
Engineering) community. Indeed, it aims at substituting models for code. When
we want to execute a model written using a DSML (Domain-Specific Modeling
Language), we have the choice between compiling or interpreting it. Compiling
a model consists in applying a transformation to it. It is translated into an other
language (which is at a lower level of abstraction). We also speak about code
generation to reference this approach. Unlike compiling a model, interpreting a
model does not require to transform it. An engine is able to directly interpret the
DSML execution semantics. We also speak about i-DSML [7] for this method.

The fact that a model conforming to an i-DSML can be executed before its
implementation offers two advantages. The first advantage is that it is possible
to discover and correct problems at the design-time in the software development
process. The second advantage is that the implementation step in the software
development process can possibly be skipped. An i-DSML is a ’self-contained’
metamodel. It means that a number of elements are added to its structure. At
first glance, this characteristic can be seen as a disadvantage because it pollutes
the metamodel. But in MDE, we can consider this as an advantage because
these elements in the model can be very useful (e.g., to create a trace at runtime
to debug the system). So, using an i-DSML for the development of software
applications is a good strategy to decrease efforts and costs.

2 Adaptation of an Executed Model and its Application to State Machines

Nowadays, the software adaptation has gained more and more interest. When
we are building an adaptable software based on an i-DSML, the model has to be
adaptable at runtime. So, its i-DSML must allow to define adaptable models.

In order to adapt a software at runtime, an adaptation loop must be im-
plemented [4]. A first approach to implement this loop is the common mod-
els@run.time [1], depicted in Fig. 1 (a). In this case, a model is embedded at
runtime and it is not executed but is kept in sync with the running system. Thus,
this model is an abstract representation of the system and is used for a reasoning
purpose on the necessity to adapt. An other way to implement this loop is the
executed model adaptation, as depicted in Fig. 1 (b). In this case, a model is
executed and directly corresponds to the running system. A last approach is to
combine the two previous ones, and is depicted in Fig. 1 (c). In this case, a model
is embedded at runtime and it is not executed (like in the first approach). In
addition, there is an other model that is executed and corresponds to the system
(like in the second way).

The main disadvantage of the first and the last solutions is that we have two
distinct entities at runtime (the system and the model). This requires to be able
to keep a valid correspondence between the elements of the two entities. So, we
think that using the second solution is a good alternative to adapt a model at
runtime. We also speak about direct adaptation to point at this approach.

(@) (b)

adaptation

(©

‘ System ‘ Modification ‘ System=exec. model ‘
Modification : m : Modification
Representation : : Representation

y ; ‘ System=exec. model ‘ . |

| Model K U . Model |
u E Adaptation? E U
Adaptation? ; ; Adaptation?
Common Executed model Common models@run.time

models@run.time on executed model

Fig. 1. The three ways to implement the adaptation loop

The problem of my thesis is to find an approach to adapt an executed model.
The idea is to execute a model conforming to an i-DSML and to adapt it during
its execution, based upon the direct adaptation approach. As an illustration, I
am studying the case of state machines.

In Sect. 2, I give an example of a state machine that is adapted during its
execution. In Sect. 3, I present the forthcoming contributions, both scientific and
technical.

Adaptation of an Executed Model and its Application to State Machines 3
2 Working example

To illustrate the adaptation of an executed model, let us take the example of
a train state machine ! previously published in [2,3]. The train can run on
railroads at different speeds (0, 40, 100 and 130). The train can encounter signals
of different colors (red, amber, green and purple) during the travel indicating
that it must change its speed. When modelling this situation, each state of the
state machine is associated with a speed and each event on the transitions of the
state machine is associated with a color.

In Fig. 2 (a), we use an extended train state machine in which each state is
able to treat all the events. So, there are a lot of transitions between the states.

Purple

Red ‘ Green

1
Red Amber Purple Normal ‘

Amber Green

o) (0) int_SpeedUp b
H1 00 =71 130 H*
Red " Amber

int_SpeedDown

Green)

Purple

(a) Extended train state machine: Explicit management of all events

‘] List of events with
Red Amber their kinds and properties:

<<normal>> Normal |
—— Amber (—\Dﬁ Green . <<stop>> Red {speed=0}
| { <<low>> | 100 int_SpeedUp __ 130 éb <<low>> Amber {speed=40}
0 Red (spe:é)—w) Amber {speed=100} nt_SpeedDown {speed=130} <<normal>> Green {speed=130}

<<normal>> Purple {speed=300}

int_SpeedUp
Green 4\ int_SpeedDown

List of events with

Red Red Amber ‘

<<normal>> Normal ‘ their kinds and properties:

<<stop>> Red {speed=0}

Amber (—\Dﬁ Green .
<<stop>> | {<dow>> % éb <<lows> Amber {speed=40}
0 40 <<normal>> Green {speed=130
J Red E Amber (speed=100} J T gpeedbown (speed=130} <! > {sp }

{speed=0} peed=40} <<normal>> Purple {speed=300}
int_SpeedUp
White int_SpeedDown
Red <<reduced>> White {speed=70}
Green
reduced
White D
{speed=70}

(c) Train state machine: Addition of a state and its associated transitions

Fig. 2. Adaptation of the train state machine

The i-DSML structure of this state machine is composed of three parts. The
static part contains the main elements (the states, transitions, events, ...). The
dynamic part contains the elements that can be changed during the execution
(the current state, ...). The adaptation part contains the elements to manage the

! This example is not at all intended to be considered as a realistic specification of a
train system

4 Adaptation of an Executed Model and its Application to State Machines

adaptation (the kinds and properties). In Fig. 2 (b), each state and event of the
train state machine is associated with a kind (stop, low and normal) and a prop-
erty (speed). These new kinds are written within guillemets (e.g., <<stop>>)
whereas these new properties are written within braces (e.g., {speed=0}). For
the events, these new kinds and properties are listed in the dashed box at the
right of the figure.

We have different ways to adapt. Indeed, we can choose between the two
adaptation modes below:

1. Exact mode: only the name of the event is checked.
2. Fail-soft mode: the kind of the event is checked.

Now, we are executing the train state machine. Let us consider that the train
encounter a white color signal. Note that this event is associated with a kind
(reduced) and a property (speed=70). Because the train state machine does not
include any events with the reduced kind or with the white name, an adaptation
is performed, whatever the adaptation mode selected. A state, transitions and
events are added to the model structure. This new state is named "70’ because the
value assigned to the speed property of the event responsible of this adaptation
is equal to seventy. This new state and these new events are associated with
the same kind (reduced) and the same property (speed) than the event that
triggered this adaptation. The current state is changed to this new state. In Fig.
2 (c), we can see the result of the adaptation.

3 Expected results

In this section, I describe the scientific contribution and the technical contribu-
tion. The scientific contribution is about model execution and model execution
adaptation. The technical contribution is about tools enabling model execution
and model execution adaptation for state machines.

3.1 Scientific contribution

I recall that the problem of my thesis is to find an approach to adapt an executed
model with a special focus on state machines. I will execute a model conforming
to an i-DSML and I will adapt it during its execution using the direct adaptation
approach. The significance of this problem is not easy to understand because it
raises important questions:

— What is the meaning of adapting a model during its execution?

— Why and how to modify its structure (i.e., its static, dynamic and adaptation
parts)?

— Why and how to modify its behavior (i.e., its execution and adaptation
semantics)?

Adaptation of an Executed Model and its Application to State Machines 5

To the best of our knowledge, the current state of the art has not solved this
problem yet because adapting a model during its execution using an i-DSML
has never been studied by the research community.

The goal of my research work is to give a precise answer to each of the
previous questions. I am currently working on the description of the required
elements for an adaptable i-DSML, to be sure that a model conforming to this
metamodel can be considered as adaptable during its execution. Also, I am
planning to create a DSL (Domain-Specific Language) which helps to create
adaptation rules that will be taken in account during the adaptation loop. To
that purpose, I planned to define the sense of an execution environment (or a
context) from a model-based point of view.

As T am adapting executed models, I have studied the model execution and
the model execution adaptation till now. I am showing below different ways that
I found to execute models, then I explain the model execution adaptation.

Model execution There are different kind of approaches allowing us to execute
models.

A first approach consists in using an action language (e.g., Kermeta, FUML
or ALF) to implement an execution semantics. The action languages can have
a graphical or textual syntax. For example, FUML has a graphical syntax (we
can use activity diagrams to write an execution semantics as explained in [9])
while Kermeta and ALF have textual syntaxes.

An other way to execute models is to use a code generator (e.g., EMF) to
transform a model into a general-purpose programming language (e.g., Java). In
that case, the generated code contains empty parts that you must fill-in to add
the missing execution semantics.

It exists a third approach which consists in using a transformation language
(e.g., ATL) to do several endogenous transformations. Each transformation rep-
resents a step of execution. Doing so, at each step, the model may be serialized.

A fourth method to execute models is to use dedicated tools (e.g., PauWare
Engine 2 for a state machines or Tina for Petri nets) where the execution se-
mantics is directly embedded in the tools. PauWare Engine is a Java library, so
the model is written in Java code. For his part, Tina has a graphical editor.

A last approach is to execute models using a tool that performs exogenous
transformations (e.g., SCXML2PauWare). If there are currently no existing tools
to run models written using the source metamodel, we can transform them to a
target metamodel where tools are available. SCXML2PauWare enables to trans-
form a state machine conforming to the SCXML metamodel to an equivalent
state machine conforming to the PauWare Engine metamodel. In other words,
it brings a translational semantics to SCXML state machines.

Model execution adaptation In Sect. 1, I say that an adaptation loop must
be implemented. In the case of an executed model, this loop controls and fires

2 http://www.pauware . com/

6 Adaptation of an Executed Model and its Application to State Machines

adaptation rules to adapt a model to its execution environment. These rules are
composed of checking and actions.

There are two categories of actions [3]. The first is the CUD (Create, Update
and Delete) whereas the second is the Substitution. The CUD is intended to
be applied on the structure (i.e., the static, dynamic and adaptation parts) of
the model. The Substitution is intended to be applied on the behavior (i.e., the
execution and adaptation semantics) of the model.

Table 1 sums up the four actions applied on the elements of the model. We
can see that when we are executing a model, only the elements of the dynamic
part can be modified by the actions. When we are adapting a model, all the
elements can be modified by the actions.

Element of the model

Execution actions

Adaptation actions

Static part N/A Create/Update/Delete

Dynamic part Create/Update/Delete|Create/Update/Delete

Adaptation part N/A Create/Update/Delete
Execution semantics N/A Substitution
Adaptation semantics N/A Substitution

Table 1. The four actions applied on the elements of the model

In the example of Sect. 2, we have applied CUD adaptation actions on el-
ements of the three structural parts. Indeed, the static part has been modified
because we have added a state, transitions and events. The adaptation part has
been modified because we have added kinds and properties associated with these
new states and events. Finally, the dynamic part has been modified because the
current state now references this new state.

The engine embeds operations corresponding to the execution semantics and
the adaptation semantics. The Substitution adaptation action deals with these
embedded operations. Using the DSL for the adaptation, we can weave these
operations together in order to modify the two behavioral parts. So, in addition
to create adaptation rules, this DSL will allow to orchestrate them (as does a
language for workflows). The resulting orchestrations, as full-fledged executable
models, will be in turn subjects to adaptation, as explained from the beginning
of this article. We think it is a conceptually sound way to deal with reflexive
adaptation (or meta-adaptation).

3.2 Technical contribution

I am studying the case of state machines. The state machines (or statecharts)
have been described in [5]. Afterwards, they have been included into the UML
[8] specification. Meanwhile, the SCXML [6] working draft was released.

Our research team has already developed a tool to execute state machines
(PauWare Engine). For the example of Sect. 2, the execution semantics of state
machines has been rewritten in Kermeta instead of using this existing tool,

Adaptation of an Executed Model and its Application to State Machines 7

for pedagogical reasons. However, in practice this way to do is error-prone and
consumes unnecessary efforts and time. Consequently, it should be better to use
PauWare Engine that is fully compliant with the UML specification. Because
PauWare Engine does not support the adaptation yet, I am planning to extend
the PauWare Engine API to add this feature.

In addition, I am developing a tool called SCXML2PauWare, to be able
to run state machines initially described using the SCXML format. It is an
Eclipse plug-in that does exogenous transformations (i.e., transformations from
a source metamodel different from the target metamodel). The source meta-
model is SCXML whereas the target metamodel is UML/PauWare. As such,
SCXML2PauWare can be considered as a bridge since it increases the number
of technological spaces supported by PauWare Engine.

In Fig. 3, we can see the big picture of this technical contribution. At the
top of the figure, there are state machines written within different technological
spaces (UML, SCXML, ...) and adaptation rules. These various state machines
are all switched, through specific bridges, into equivalent PauWare state ma-
chines. At the bottom of the figure, there is the engine that is able to support
both model execution and model execution adaptation for state machines. This
engine takes as inputs the PauWare state machine and the adaptation rules.

UML state machine SCXML state machine Adaptation rules

UML2PauWare
bridge

SCXML2PauWare
bridge

PauWare state machine

Fig. 3. The PauWare Engine adaptation extension and the SCXML2PauWare bridge

8 Adaptation of an Executed Model and its Application to State Machines

4 Conclusion

Building adaptable software based on the direct execution of models is a quite
novel and promising approach. My thesis aims at defining a sound conceptual
framework to study adaptable i-DSML, that is, a family of languages that allow
to create models directly executable and adaptable through an engine. Moreover,
since I pay a special attention on the adaptation issue, I expect to develop a
specific language for writing adaptation rules and managing their orchestration
during the adaptation loop. Beyond the scientific contribution, my research work
ought to result in a tool chain dedicated to this question.

References

1. Gordon Blair, Nelly Bencomo, and Robert B. France. Models@run.time. Computer,
42(10):22-27, 2009.

2. Eric Cariou, Olivier Le Goaer, and Franck Barbier. Model Execution Adaptation?
In 7th International Workshop on Models@run.time (MRT 2012) at MoDELS 2012.
ACM Digital Library, 2012.

3. Eric Cariou, Olivier Le Goaer, Franck Barbier, and Samson Pierre. Characterization
of Adaptable Interpreted-DSML. In European Conference on Modelling Foundations
and Applications (ECMFA 2013), volume 7949 of LNCS, pages 37-53. Springer,
2013.

4. Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jes-
per Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna
Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt
Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu,
Sam Malek, Raffaela Mirandola, Hausi A. Miiller, Sooyong Park, Mary Shaw,
Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. Software En-
gineering for Self-Adaptive Systems: A Research Roadmap. In Betty H. Cheng,
Rogério Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors, Software
Engineering for Self-Adaptive Systems, pages 1-26. Springer-Verlag, Berlin, Heidel-
berg, 2009.

5. David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8(3):231-274, 1987.

6. Scott McGlashan, Michael Bodell, Jerry Carter, RJ Auburn, Torbjérn Lager, No’am
Rosenthal, T. V. Raman, Daniel C. Burnett, Jim Barnett, Rafah Hosn, Mark Hel-
bing, Rahul Akolkar, and Klaus Reifenrath. State Chart XML (SCXML): State
Machine Notation for Control Abstraction. W3C Working Draft, W3C, October
2009. http://www.w3.org/TR/2009/WD-scxml-20091029/.

7. Marjan Mernik. Formal and Practical Aspects of Domain-Specific Languages: Recent
Developments. Information Science Reference, Hershey, PA, September 2012.

8. OMG. OMG Unified Modeling Language (OMG UML), Superstructure. OMG
Specification, OMG, August 2011. http://www.omg.org/spec/UML.

9. Mayerhofer Tanja, Langer Philip, and Wimmer Manuel. Towards xMOF: executable
DSMLs based on fUML. In Proceedings of the 2012 workshop on Domain-specific
modeling, DSM 12, pages 1-6, New York, NY, USA, 2012. ACM.

