Mining Feature Models from the
Object-Oriented Source Code of a Collection of
Software Product Variants

Ra’fat AL-msie’deen

LIRMM / CNRS & Montpellier 2 University, France
Al-msiedee@lirmm.fr

Abstract. In order to migrate software product variants which are con-
sidered similar into a software product line (SPL), it is essential to iden-
tify the mandatory and optional features between the product variants.
To exploit existing software variants and build a SPL, a feature model
of this SPL must be built as a first step. To do so, it is necessary to
mine optional and mandatory features from the source code of the soft-
ware variants. Thus, we propose, in this paper, a new approach to mine
features and feature models from the object-oriented source code of a
set of software variants based on Formal Concept Analysis and Latent
Semantic Indexing.

Keywords: Software product line engineering, software product vari-
ants, feature mining, feature model, Formal Concept Analysis, Latent
Semantic Indexing.

1 Introduction

A software product line (SPL) is ”a set of software intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular
market segment or mission and are developed from a common set of core assets
in a prescribed way” [1]. A SPL is usually characterized by two sets of features:
the features that are shared by all products in the family, which represent the
SPL’s commonalities, and the features that are shared by some, but not all,
products in the family, which represent the SPL’s variability. SPLs are usually
described with a de-facto standard formalism called feature model [1]. To switch
to SPLE starting from a collection of existing variants, the first step is to mine
a feature model that describes the SPL. This further implies to identify the
software family’s common and variable features. Manual reverse engineering of
the feature model for the existing software variants is time-consuming, error-
prone, and requires substantial effort [2]. This paper proposes an approach to
mine features from a collection of software product variants. This is the first step
towards defining the feature model (FM) of the software family. Our approach
is based on the identification of the implementation of these features among
object-oriented (OO) elements of the source code (c¢f. Figure 1; where I; are

2 R. AL-msie’deen

source code elements and F} are features). Also in this paper, we mine feature
model from software configurations (i.e., product feature sets) that are produced
by our previous works [1,4].

Software_A | | ISom\-m,B I | Software_C I
I

Implementation Space

o
l2]] 12 12

Feature Space

O & ®®O@ED

Fig. 1. Mining Feature From Software Product Variants

In our work two techniques are used for feature mining approach. The first
one is FCA technique (¢f. Section 3.1 and Section 3.2.2); FCA is a classifica-
tion technique that takes data sets of objects and their attributes, and extracts
relations between these objects according to the attributes they share [6]. The
interested reader can find more information about our use of FCA in [1,4]. The
second technique is LST (¢f. Section 3.2.1); LSI is an advanced IR method. LSI
computes textual similarity among different documents [5]. In LSI technique,
one type of software artifact is treated as a query and another type of artifact is
treated as a document. The textual similarity is computed based on the occur-
rences of terms in documents. If two documents share a large number of terms,
those documents are considered to be similar. For more details about LSI the
reader can refer to [4].

Our approach is detailed in the remainder of this paper as follows. Section 2
shows an overview of our approach. Section 3 presents the feature mining pro-
cess. Section 4 describes the experiments that were conducted to validate our
proposal. Section 5 discusses the related work. Section 6 concludes and provides
perspectives for this work.

2 Approach Overview

This section presents the main concepts and hypotheses used in our approach
for mining features from source code. It also shortly describes the example that
illustrates the remaining of the paper.

2.1 Features versus Object-oriented Building Elements

In this paper we focus on the mining of functional features [1,4]. We consider
software systems in which functional features are implemented at the program-

Mining Feature Models from Software Product Variants 3

ming language level (i.e., source code). We also restrict to OO software. Thus,
features are implemented using object-oriented building elements (OBEs) and
we restrict our study to packages, classes, attributes, methods or method body
elements (i.e., local variable, attribute access, method invocation). We consider
that a feature corresponds to one and only one set of OBEs. We also consider
that feature implementations may overlap: a given OBE can be shared between
several features’ implementation. Mining a feature from the source code of vari-
ants amounts to identify a group of OBEs that constitutes its implementation.
This group of OBEs must either be present in all variants (case of a common
feature) or in some but not all variants (case of an optional feature). As the
number of OBEs is large, mining features requires to reduce this search space
(¢f. Figure 2). Several strategies can be combined to do so:

C‘E&";‘"ﬁ‘;’;;’;:‘l’::k?" Common Atomic Block_1
Tnitial Search Space
Common Atomic Block_ i
OBEs For All Software Variants

Block of variation_1 Atomic Block of Variation_1 |
Optional Feature Set Block of variation_2 | Atomic Block of Variation_ j |
Block of variation_n

Fig. 2. The search space for feature mining

— separate the OBE set in two subsets, the common feature set — also called
common block (CB) — and the optional feature set, on which the same search
process will have to be performed.

— separate the optional feature set into small subsets that each contains OBEs
shared by groups of two or more variants or OBEs that are hold uniquely
by a given variant. Each of these subsets is called a block of variation (BV).

— identify common atomic blocks (CAB) amongst common block based on
the expected lexical similarity between the OBEs that implement a given
feature. A CB is thus composed of several CABs.

— identify atomic blocks of variation (ABV) inside of each BV based on the
expected lexical similarity between the OBEs that implement a given feature.
A BV is thus composed of several ABVs.

All the concepts we defined for mining features are illustrated in the mapping
model of Figure 3.

2.2 An Illustrative Example

As an illustrative example, we consider five database software variants. Database
system 1 supports core database feature: notify triggers. Database system 2 sup-
ports trigger list and state features, together with the core feature. Database sys-
tem 8 supports trigger list, state and acquire read lock features, together with

4 R. AL-msie’deen

Software Product Variants

1. Block of variation Optional Feature

Qo 1

1 Corespond

Correspond 1

Fig. 3. OBE to Feature Mapping Model

the core feature. Database system 4 has the core database feature and a new
release read lock feature. Database system &5 supports trigger list, state, acquire
read lock and release read lock features, together with the core ones. In this ex-
ample, we only use the source code of software variants as input of the feature
mining process.

3 The Feature Mining Process

The mapping model between OBEs and features defines associations between
these features and the corresponding OBEs. To determine instances of this
model, we describe our feature mining process. This process takes the variants’
source code as its input. The first step of this process aims at identifying BVs
and the CB based on FCA (¢f. Section 3.1). In the second step, we rely on LSI
to determine the similarity between OBEs (cf. Section 3.2.1). This similarity
measure is used to identify atomic blocks based on OBE clusters in the third
step (cf. Section 3.2.2). Figure 4 shows our feature mining process.

Implementation Space Legend:

. . Commonalities and
Static Analysis | —/ OBEs variabilities computation

— Common Block

(Block of Variation),

Software Variants Common OBE

|
Feature Space ‘ !

¢ Featwe Atomic Block H Chustering je—y/ Smmilarity Lexical snm-]an(y}_‘
[e Matrix computation

Fig. 4. The Feature Mining Process

Mining Feature Models from Software Product Variants 5
3.1 Identifying the Common Block and Blocks of Variation

The first step of our feature mining process is the identification of the common
OBE block and of OBE blocks of variation. The technique used to identify the
CB and BVs relies on FCA. First, a formal context, where objects are product
variants and attributes are OBEs (c¢f. Figure 5 (left)), is defined. The corre-
sponding AOC-poset is then calculated (cf. Figure 5 (right)). More information
about this step can be found in [4].

Concept 0

Package (com.database)
Class (Database_ com.database)
Method (notifyTriggers(locker)_ Database)

/

Concept_1

Attribute (state_ Database)
Method (DatabaseState()_ Database)
Attribute (triggerList_ Database)
Attribute Access (triggerList notifyTriggers(locker))
Local Variable (i_ notifyTriggers(locker))

System_1

System_2

f

Concept_3

Method Invocation (acquireReadLock []_ notifyTriggers(locker))
Method (acquireReadLock()_ Database)

System_3

Concept_2

Method Invocation (releaseReadLock []_ notifyTriggers(locker))
Method (releaseReadLock()_ Database)

System_4

Method Invocation (releaseReadLock [|- notify Triggers(locker))
Method Invocation (acquireReadLock []- notifyTriggers(locker))

Attribute (triggerList- Database)

Attribute Access (triggerList- notifyTriggers(locker))
Local Variable (i- notifyTriggers(locker))

Attribute (state- Database)

Method (DatabaseState()- Database)

Method (releaseReadLock()- Database)

Method (acquireReadLock()- Database)

System-1

Concept_4
System-2 X | X|X]| X i
System-3 x| x| x X X
System-4 XX System_5

XX [X|X[x|Method (notifyTriggers(locker)- Database)

X |X[X|X[x|Class (Database_ com.database)

X|X|X|X|x|Package (com.database)

System-5

Fig. 5. The Formal Context and AOC-poset for Database Software Variants

3.2 Identifying Atomic Blocks

The CB and BVs might each implement several features. Identifying the OBEs
that characterize a feature’s implementation thus consists in separating OBEs
from the CB or from each of the BVs in smaller sets called atomic blocks.
Atomic blocks are identified based on the calculation of the similarity between
OBE:s from the CB or a BV. These similarities result from applying LSI. Atomic
blocks are clusters of the most similar OBEs built with FCA as detailed in the
following.

6 R. AL-msie’deen

3.2.1 Measuring OBEs’ Similarity Based on LSI: OBEs of BVs or of
the CB respectively characterize the implementation of optional and mandatory
features. We base the identification of subsets of OBEs, which each constitutes
a feature, on the measurement of lexical similarity between these OBEs. This
similarity measure is calculated using LSI. We rely on the hypothesis that OBEs
involved in implementing a functional feature are lexically closer to one another
than to the rest of OBEs. To compute similarity between each pair of OBEs in
the CB and BVs, we proceed in three steps: building the LSI corpus, building
the term-document matriz and the term-query matriz for each BV and for the
CB and, at last, building the cosine similarity matriz. The interested reader can
find more information about these three steps in [4].

Concept_01

Attribute (state_ Database)
Method (DatabaseState()_ Database)

Attribute (state_ Database)
Method (DatabaseState()_ Database)

Concept_00

Attribute (triggerList Database)
Attribute Access (triggerList_ notifyTriggers (locker))
Local Variable (i_ notifyTriggers (locker))

Attribute (triggerList Database)
Attribute Access (triggerList_ notifyTriggers (locker))
Local Variable (i_ notifyTriggers (locker))

Attribute Access (triggerList_ notifyTriggers(locker))|w
Attribute Access (triggerList- notifyTriggers(locker))|w

Local Variable (i- notifyTriggers(locker))
Local Variable (i- notify Triggers(locker))

Method (DatabaseState()- Database)
% |Method (DatabaseState()- Database)

Attribute (triggerList- Database)
Attribute (triggerList- Database)

~| Attribute (state- Database)
% | Attribute (state- Database)

0.6173[0.0064[-0.1261| 0.9997
0.6173 1 0.7906] 0.7025 | 0.6350
0.0064 |0.7906 1 0.9911 | 0.0292
-0.1261[0.7025|0.9911 1 -0.1035
0.9997(0.6350/0.0292|-0.1035 1

n
i

i
"

G| N[
G| =
"

"

%

Fig. 6. Similarity matrix, Formal context and Atomic blocks mined from Concept-1 of
Figure 5 (right))

3.2.2 Identifying Atomic Blocks Using FCA: We then use FCA to identify,
from each block of OBEs, which elements are mutually similar. To transform the
(numerical) similarity matrices of previous step into (binary) formal contexts,
we use a threshold. 0.70 is the chosen threshold value (a widely used threshold
for cosine similarity [5]) meaning that only pairs of OBEs having a calculated
similarity greater than or equal to 0.70 are considered similar. Figure 6 (left)
shows the formal context obtained by transforming the similarity matrix corre-
sponding to the BV of Concept-1 from Figure 3 (right). As an example, in the
formal context of this table, the OBE ”Attribute (state- Database)” is linked to

Mining Feature Models from Software Product Variants 7

the OBE ”Method (DatabaseState()- Database)” because their similarity equals
0.9997, which is greater than the threshold. However, the OBE ”Attribute (trig-
gerList- Database)” and the OBE ”Method (DatabaseState()- Database)” are
not linked because their similarity equals 0.6350, which is less than the thresh-
old. The resulting AOC-poset is composed of concepts the extent and intent of
which group similar OBEs. For the database example, the AOC-poset of Figure 6
shows two new concepts which will give rise to two atomic blocks of variation.
They correspond to two distinct features mined from a single block of variation
(Concept_1 from Figure 5 (right)). The same feature mining process is used for
the CB and for each of the BVs.

4 Experimentation

To validate our approach, we ran experiments on two Java open-source soft-
wares: Mobile media! and ArgoUML?2. Mobile media and ArgoUML variants
are presented in Table 1 characterized by metrics LOC (Lines of Code), NOP
(Number of Packages), NOC (Number of Classes) and NOOBE (Number Of
Object-oriented Building Elements).

Table 1. Mobile Media and ArgoUML software product variants

Product Number| Mobile Media Product Description Loc NOP| NOC | NOOBE
P1 Mobile photo core 1,046 6 15 |822

P2 Exception handling enabled 1,159 7 24 925

P3 Sorting and edit photo label enabled |1,314 7 25 |1,040
P4 Favourites enabled 1,363 7 25 1,066
Product Number| ArgoUML Product Description LOC NOP | NOC | NOOBE
Pl All Features disabled 82,924 |55 1,243[74,444
P2 All Features enabled 120,348|81 1,666|100,420
P3 Only Logging disabled 118,189[81 1,666] 98,988
P4 Only Cognitive disabled 104,029|73 1,451(89,273
P5 Only Sequence diagram disabled 114,969|77 1,608|96,492
P6 Only Use case diagram disabled 117,636|78 1,625]98,468
PT7 Only Deployment diagram disabled 117,201|79 1,633]|98,323
P8 Only Collaboration diagram disabled|118,769|79 1,647|99,358
P9 Only State diagram disabled 116,431|81 1,631|97,760
P10 Only Activity diagram disabled 118,066|79 1,648(98,777

Table 2 summarizes the obtained results for each software product variant.
For readability’s sake, we manually associated feature names to atomic blocks.
In order to evaluate our approach and based on our knowledge about software
variants and their features (i.e., OBEs for each feature) we have used three
measures: precision, recall and F-Measure(cf. Equations 1, 2 and 3). All measures
have values between [0, 1] [4].

>, correctly retrieved OBEs
>, total retrieved OBEs

% (1)

Precision =

>, correctly retrieved OBEs
>, total relevant OBEs

Recall = % (2)

! http://homepages.dcc.ufmg.br/.figueiredo/spl/
2 http://argouml-spl.tigris.org/

8 R. AL-msie’deen

Precision - Recall

F—-M =2. 3
casure Precision + Recall ¢ (3)

Results show that precision appears to be high for all optional features. This
means that all mined OBEs grouped as features are relevant. This result is due
to search space reduction. For mandatory features, precision is also quite high.
Considering the recall metric, its average value is 66% for Mobile Media and 67%
for ArgoUML. This means most OBEs that compose features are mined. The
most important parameter to LSI is the number of chosen term-topics (i.e., Num-
ber of topics (K)). In our work we cannot use a fixed number of topics for LSI
because we have blocks of variation (i.e., partitions) with different sizes.

Table 2. Features Mined from Mobile Media and ArgoUML Softwares

Case Study Feature Type # OBEs FEvaluation Measures
Mobile Media Features Common| Optional| Relevant OBEs| Correctly Retrieved OBEs K | Precision | Recall| F-Measure
Create Album X 40 35 0.05 58% 87% 70%
Delete Album X 35 30 0.05 60% 85% 70%
Create Photo X 30 25 0.05 62% 83% 71%
Delete Photo X 64 55 0.05 68% 85% 76%
View Photo X 51 45 0.05 64% 88% 74%
Edit Photo Label X 169 131 0.02 100% 7% 87%
Exception handling X 104 73 0.03] 100% 70% 82%
Favourites X 58 45 0.06 100% 78% 87%
Sorting X 32 26 0.04 100% 80% 88%
ArgoUML Features Common| Optional | Relevant OBEs| Correctly Retrieved OBEs K | Precision | Recall| F-Measure
Class Diagram X 3587 2040 0.03 72% 56% 63%
Diagram X 1309 1040 0.06] 100% | 80% 88%
Deployment Diagram X 1334 1000 0.05 100% 74% 85%
Collaboration Diagram X 935 630 0.06] 100% | 67% 80%
Use Case Diagram X 1928 1250 0.03 100% 64% 78%
State Diagram X 2597 1800 0.03] 100% | 69% 81%
Sequence Diagram X 3708 2500 0.02 100% 67% 80%
Activity Diagram X 1583 1000 0.06| 100% 63% 7%
Cognitive Support X 10193 7200 0.01] 100% 70% 82%
Logging X 1149 700 0.02] 100% | 60% 75%

Figure 7 part (a) shows the mined feature model (FM) for ArgoUML-SPL
by our approach. The mined FM consists of optional and mandatory features
with only one level of hierarchy and without cross-tree constraints and groups of
features constraints. Our approach mines all concrete features from ArgoUML-
SPL and Mobile Media software variants (cf. Figure 8). The FM in Figure 7 part
(b) represents the FM as manually designed by the authors of ArgoUML-SPL.
All abstract features in ArgoUML-SPL and Mobile Media software variants like
feature ” Album Management” or ”"Photo Management” are not mined by our
approach. The abstract feature is not a concrete feature in the source code. It
corresponds to a group of features or to the root feature in the FM. The abstract
feature cannot be identified by our approach. In this paper, we mine FM from
software configurations (i.e., product feature sets) that were produced by our
previous works [1,4]. We integrated the FeatureIDE? plugin with our approach
to represent the mined FM 4.

3 http://www.fosd.de/featureide/
* Available at https://code.google.com/p/refm/

Mining Feature Models from Software Product Variants 9

(a)
o——— 01— — 00— —C
Class | | Logging @ Activity = Use Case

ArgoUML

State | | Collaboration Seqﬁence CogniﬁvéSupporl Diag}ams Depbyment

(b) ArgoUML
o Legend:
Cognitive_Support Logging = Diagrams @ Mandatory
N 7 Optional
o — —— ~ A, ~— Abstract
Class | | Deployment | Collaboration = Use_Case | State | Sequence | Activity Concrete

Fig. 7. The mined feature model for ArgoUML-SPL

(a) MobileMedia
Delete Abum Edit Photo Label ~ View Photo Delete Photo Create Album Create Photo Sorting Favourites | Exception handling

(b) Mobile_Media

Legend:
® Mandatory
<" Optional

Abstract
Concrete

o O ® ——0
Album_Management | Sorting Favourites Photo_Management | | Exception_Handling

LJ ® o LJ L o
Create_Album | Delete_Album | | Create_Photo | Delete_Photo | View_Photo || Edit_Photo_Label

Fig. 8. The mined feature model for Mobile Media software variants

5 Related work

In our previous work [1] we present an approach for feature location in a col-
lection of software product variants based on FCA by distinguishing between
the common block (i.e., CB) and blocks of variation (i.e., BVs). We extended
our previous work [1] by splitting blocks of source code elements based on the
lexical similarity [4], in this second approach we distinguish between the com-
mon features that appear in the common block and the optional features that
appear in the same block of variation based on the lexical similarity between
OBEs. In this paper, we give more details about the mined features compared
to the existing FM. An inclusive survey about approaches linking features and
source code in a single software is proposed in [7]. Rubin et al. [8] present an ap-
proach to locate optional features from two product variants’ source code. They
do not consider common features and limit their proposal to two variants. Xue et
al. [9] propose an automatic approach to identify the traceability links between
a given collection of features and a given collection of source code variants. They
thus consider feature descriptions as an input. The approach proposed by Ziadi
et al. [2] is the closest to ours. They identify all common features as a single
mandatory feature. Moreover, they do not distinguish between optional features
that appear together in a set of variants. Their approach doesn’t consider the
method body.

10 R. AL-msie’deen

6 Conclusion and perspectives

In this paper, we proposed an approach based on FCA and LSI to mine features
and FM from the object-oriented source code of software product variants. We
have implemented our approach and evaluated its produced results on two case
studies. Results showed that most of the features were identified. The mined
FM represents all concrete features. The threat to the validity of our approach
is that developers might not use the same vocabularies to name OBEs across
software product variants. This means that lexical similarity may be not reli-
able in all cases to identify common and variable features. In future work, we
plan to combine both textual and structural similarity measures to be more
precise in determining feature implementation. In this paper, we manually asso-
ciated feature names to atomic blocks, based on the study of the content of each
block. As a future work we plan to automatically propose feature names for the
atomic blocks. We also plan to mine FM directly from software configurations
(i.e., product feature sets) with its constraints (i.e., cross-tree constraints and
groups of features constraints).

References

1. AL-Msie’deen, R., Seriai, A.D., Huchard, M., Urtado, C., Vauttier, S., Salman, H.E.:
Feature location in a collection of software product variants using formal concept
analysis. In: ICSR ’13 Conference, Springer (2013) 302-307

2. Ziadi, T., Frias, L., da Silva, M.A.A., Ziane, M.: Feature identification from the
source code of product variants. In: CSMR’2012. (2012) 417-422

3. Arévalo, G., Berry, A., Huchard, M., Perrot, G., Sigayret, A.: Performances of galois
sub-hierarchy-building algorithms. In: ICFCA. (2007) 166-180

4. AL-Msie’deen, R., Seriai, A., Huchard, M., Urtado, C., Vauttier, S., Salman, H.E.:
Mining features from the object-oriented source code of a collection of software
variants using fca and latent semantic indexing. In: SEKE ’25 Conference. (2013)

5. Marcus, A., Maletic, J.: Recovering documentation-to-source-code traceability links
using latent semantic indexing. In: ICSE ’03 Conference. ICSE ’03, Washington,
DC, USA, IEEE Computer Society (2003) 125-135

6. Ganter, B., Wille, R.: FCA, Mathematical Foundations. Springer-Verlag (1999)

7. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. Journal of Software: Evolution and Process (2012) 53-95

8. Rubin, J., Chechik, M.: Locating distinguishing features using diff sets. In: 27th
ASE Conference. ASE 2012, ACM (2012) 242-245

9. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants.
In: 19th RE Conference, IEEE (2012) 145-154

