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Abstract. Existing software product variants, developed by ad-hoc reuse
techniques such as “clone-and-own”, represent a starting point to build a
software product line (SPL) core assets for systematic reuse. In order to
re-engineer such legacy systems into a SPL, it is important to identify a
mapping between features and their implementing source code elements
in the different variants. Information retrieval (IR) methods have been
widely used to support this mapping in single software. We propose a
new approach to improve the performance of IR methods when they
are applied to a collection of product variants. The novelty of our ap-
proach is twofold. On the one hand, it exploits what product variants
have in common and how they differ to improve the accuracy of results
given by the IR methods. On the other hand, it reduces the abstraction
gap between features and source code by introducing an intermediate
level called “code-topic” for increasing the number of correctly retrieved
links. To validate our approach, we have applied it on a set of variants for
a large-scale system, ArgoUML-SPL. The experimental results showed
that our approach outperforms the conventional application of IR tech-
niques as well as the most relevant work on the subject.
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1 Introduction

Software product variants are a set of similar software products which share some
features, called common features, and differ in other ones, called optional fea-
tures, to accommodate specific demands of customers in a particular domain[1].
A feature is a user-visible characteristic of software systems[2]. Features are used
to describe the commonalities and variabilities of products variants. For example,
GPS systems share common features (e.g., determining directions and positions)
but they differ in other features (e.g., live traffic information and shortest time
routing).

Usually software variants are developed by ad-hoc reuse techniques such as
“clone-and-own” where an existing product is copied and later modified inde-
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pendently from the original version to develop a new product[1]. Such reuse tech-
nique provides the ability to start from already existing tested code and make
necessary modification to it. However, this technique causes critical maintenance
problems such as maintaining each variant individually is time consuming as well
as reusing features (sharing their implementations) from existing products into
a new product will be more complicated[3]. To overcome these problems, it is
important to re-engineer such legacy software variants into a software product
line (SPL) for systematic reuse. SPL engineering is an engineering discipline sup-
porting efficient development and maintenance of related software products. It
manages common and optional features and promotes systematic software reuse
from SPLs core assets (such as features, code, documentation and etc.). It ex-
ploits knowledge about features, relationships among the features and traceabil-
ity between the features and software artifacts that implement them to develop
short time-to-market products [4].

To re-engineer software variants into a SPL, we have to identify a mapping
between features and their implementing source code elements (e.g. classes)[4].
This mapping is needed to understand software variants code and then auto-
matically derive concrete products from SPL core assets. This mapping is called
traceability links recovery or feature location. In this paper, we use the terms
“traceability links recovery” and “feature location” interchangeably.

Information retrieval (IR) has been long recognized as a method to automate
traceability recovery. The IR-based methods, such as latent semantic indexing
(LSI), rely on the analysis of textual information derived from software arti-
facts to identify traceability links[5]. For example, the keywords from feature
descriptions may match keywords in the identifiers and comments of source
code. Indeed, all IR methods recover the traceability links in single software.
The conventional application of IR methods is to match all features (i.e., their
descriptions) of a software product to its entire source code. These features and
the associated source code are called IR spaces.

In this paper, we propose a new approach to improve the performance of IR
methods when they are applied to identify traceability links between features
and object-oriented source code in a collection of software variants. The novelty
of our approach is twofold. Firstly, it exploits commonality and variability of
software variants at feature and source code levels to increase the accuracy of IR
results by reducing IR spaces. When software variants are considered together,
we can determine common features (resp. their associated source code elements)
and group optional features (resp. their associated source code elements) into
disjoint clusters. By considering a set of product variants together, we can dis-
criminate relevant and non-relevant source code elements for feature(s). This
discrimination improves the accuracy of IR results by reducing false positive
links via mapping small sets of features to small sets of source code elements.
Secondly, it reduces the abstraction gap between feature and source code levels
to increase the number of retrieved links that are correct by introducing an in-
termediate level, called “code-topic” . A “code-topic” is a cluster of classes that
are grouped based on their contents (i.e., the terms in their identifiers and com-
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ments) to implement a functionality or functionalities. Consequently, a feature
(i.e., its description) can be matched to a set of code-topics (i.e., their source
code information)where we assume that a feature can correspond to one or more
functionalities that are related. This allows us to easily map a feature to a set
of classes that are similar and grouped as a code-topic instead of mapping each
feature to each class separately. By grouping a set of classes that cover the same
topic, we can get enough information (i.e., classes’ comments and identifiers) to
match together these classes to a feature description where a feature implemen-
tation spans multiple classes.

The proposed approach effectively combines Formal Concept Analysis (FCA);
IR techniques namely Vector Space Model (VSM) and Latent Semantic Index-
ing (LSI); and lexical similarity computing. FCA and lexical similarity are used
separately to reduce IR spaces into disjoint clusters of features and their cor-
responding cluster of source code. Again FCA is used together with VSM to
derive “code-topics” from each disjoint cluster of source code. Traceability links
between features and code-topics are recovered using LSI. As a result, we can
easily determine classes relevant to each feature by decomposing each code-topic
to its classes where we assume that the feature is implemented by a set of classes.
We call our proposal as Feature-to-Code Traceability or FCT for short.

The remainder of this paper is organized as follows: background and related
work are presented in section 2. Section 3 gives an overview about our solu-
tion. Section 4 presents experimental results and evaluation. Finally, section 5
concludes our work.

2 Background and Related Work

This section is devoted to give an overview about textual analysis and Formal
Concept Analysis (FCA). It also discusses related works.

2.1 Textual Analysis

Textual analysis refers to textual similarity among documents. In our case, the
documents are both source code classes and feature descriptions where we cre-
ate for each class and feature a document. The textual similarity is computed
using the occurrence of terms in the documents. Two documents are considered
similar if they share a large number of terms. Different IR methods have been
proposed in the context of program comprehension such as LSI and VSM. How-
ever, they share four main steps[6]: creating a corpus, preprocessing, indexing,
querying. Firstly, the IR methods start by building a collection of documents
called corpus. A document is a list of source code information (i.e., identifiers
and comments) found in a partition of source code such as a method, class or
package. Secondly, the corpus undergoes a preprocessing step. The preprocess-
ing involves normalizing the documents content such as stop word removal and
stemming performing. In the third step, a term-by-document matrix is created
by using the corpus. The matrix’s columns correspond to the documents in the
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corpus and the rows represent terms that are extracted from these documents.
The values in the matrix indicate the number of occurrences the term in the
document. Finally, a user makes a query that describe the feature to be located.
Each query is manipulated by the same preprocessing techniques as the software
corpus.

Promising results have been achieved using LSI to address concept location
issue [7], and recovery of traceability links between source code and documenta-
tion[3]. Different strategies for identifying candidate traceability links are used,
such as cut-points and thresholds. Our work uses a strategy based on similarity
threshold values. Based on this strategy, all documents with a cosine similarity
value above or equal to the threshold are considered as candidate traceability
links.

2.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a technique for data analysis and knowledge
representation based on lattice theory. It identifies meaningful groups of objects
that share common attributes as well as provides a theoretical model to analyze
hierarchies of these groups. The main goal of FCA is to define a concept as a
unit of two parts: extension and intension. The extension of a concept is the
objects covered by the concept, while the intension comprises all the attributes,
which are shared by all the objects covered by the concept [8]. In our case, we
use FCA to group optional features and their associated source code elements
into disjoint clusters (i.e. concepts).

2.3 Related Works

We classify feature location techniques into two categories. The first category
support feature location in single software product. The second one includes
techniques which support feature location in a collection of software products.
A comprehensive study about techniques in the first category can be found in[3]
while the works of Ghanam et al.[8], Rubin et al.[9], Ziadi et al.[10] and Xue et
al. [11] belong to the second category.

Ghanam et al. [8] have put forward a method to keep traceability links be-
tween features of a family of software products and their source codes up-to-date.
When SPL evolves, traceability links become broken or outdated due to evolu-
tion of features and source code. Their method is based on executable acceptance
tests (EAT). EAT refers to English-like specifications (such as: scenario and story
tests). These EATs represent the specifications of a given feature and can be ex-
ecuted against the system to test the correctness of its behavior. Their approach
starts from pre-existing links to make them up to date while our approach differs
from this work as we start from scratch and assume no pre-existing links.

Rubin et al. [9] focused on only locating distinguished features of two soft-
ware variants implemented via code cloning. Distinguished features refer to the
features present in one variant and absent in another. Their work aims at iden-
tifying code regions that only implement the distinguished features to improve
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the accuracy of existing feature location techniques. These regions are called
diff set and computed by comparing the code of a variant that contains these
features to the one that does not. Their approach does not consider common
features between two variants. Therefore, the approach is not much useful to en-
hance the accuracy of existing feature location techniques when these techniques
are applied to locate common features.

Ziadi et al. [10] proposed an approach to automate feature identification from
the source code of similar products variants. Their approach aims at locating a
region of code that can implement a feature without take into account feature
information such as name and description. The main limitation of their work is
that it identifies common features as a single feature called base feature.

The most relevant work on the subject is proposed by Xue et al. [11], called
FL-PV approach. FL-PV analyzes commonality and variability at feature and
source code levels across software variants to reduce the LSI spaces. Then LSI is
used to retrieve for each feature its corresponding possible source code elements.

Our approach differs from FL-PV by considering not only reducing LSI spaces
but also reducing the abstraction gap between feature and source code to retrieve
more relevant source code elements for each feature. Regarding Ghanam et al.’s
work where the proposed approach starts from scratch and assumes no pre-
existing traceability links. With respect to Rubin et al.’s work, our approach
not only locates distinguishing features between two software variants but also
locates common features across variants. Our approach differs from Ziadi et
al.’s work by exploiting features information (i.e., name and description) that
is usually available in software variants due to the customization process to
locate not only optional features but also common features in the source code.
By exploiting this information about features, we can establish pertinent links
between features and source code elements.

3 The proposed approach

In this section, we present the basic assumptions of our work and describe our
solution to recover the traceability links.

3.1 Basic assumptions

For the purpose of this work, we adhere to the classification given by[12] which
distinguishes three categories of features: functional, interface and parameter
features. Functional features express the behavior or the way users may inter-
act with a product. Interface features express the product’s conformance to a
standard or a subsystem. Parameter features express enumerable, listable envi-
ronmental or non-functional properties.

We also restrict ourselves to object-oriented systems. Thus in an object-
oriented source code, a feature either common or optional can be implemented
by using packages, classes, methods, attributes, etc. As the class represents the
main building unit in all object-oriented languages and most often developers
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Fig. 1. An overview of our approach.

think about the class as a set of responsibilities that simulate a concept or
functionality from the application domain; we assume that the functional feature
is implemented by a set of classes.

3.2 Feature-To-Code Traceability Process: Overview

Figure 1 shows our traceability recovery process. This process takes two inputs:
object-oriented source code and feature description of a set of given product
variants. Each feature is identified by its name and the description which consists
of short paragraph. Such feature information is available in product variants due
to the need for product customization.

Our traceability recovery process consists of four main steps. The first two
steps aim to reduce LSI spaces. Firstly, lexical similarity computing separates
all features and classes of a given set of software variants into common and
variable partitions (see step 1 in Figure 1). At feature level, common and variable
partitions consist of common and optional features respectively. At source code
level, common and variable partitions consist of classes that implement common
and optional features respectively. Next, the variable partitions at feature and
source code levels are fragmented into disjoint clusters using FCA (see step 2
in Figure 1). In the third step, FCA and VSM are combined together to derive
“code-topics” from each disjoint cluster of classes computed that are computed
in the previous step (see step 3 in Figure 1). Finally, the traceability links between
features and their possible corresponding “code-topics” are established using LSI.
These links are used as a means to connect features with their source code classes.
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By determining “code-topics” related to each feature, we can easily determine
classes that implement each feature by decomposing each “code-topic” to its
classes.

4 Experimental Results and Evaluation

In this section, we show the case study used for the evaluation of our approach,
present the evaluation metrics and then discuss the experimental results.

4.1 Case study and experimental setting

To validate our approach, we have applied it to a seven variants of a large-scale
system, called ArgoUML-SPL1. The ArgoUML-SPL is a JAVA open-source mod-
eling tool which supports all standard UML 1.4 diagrams. It is well-documented
and real implementation for each feature can be determined by the preprocessor
directives to delimit the code associated with each feature. This pre-compilation
process allows us to establish the truth links (real implementation for each fea-
ture) for evaluating the effectiveness of our approach. The main advantage of
ArgoUML-SPL is that it implements features at the class level. The seven se-
lected variants support all ArgoUML-SPL features. They consist of two common
features (class diagram and cognitive support features) and six optional features
(state, collaboration, use-case, activity, deployment and sequence diagram). Ta-
ble 1 presents the size of selected product variants in terms of the number of
packages (NOP), the number of classes (NOC) and the number of lines of code
(LOC).

Table 1. Source code characteristics for each variant.

ArgoUML-SPL Variants

Variants NOP NOC LOC

Variant#1 67 1,488 103,969

Variant#2 70 1,554 107,334

Variant#3 74 1,587 112,060

Variant#4 69 1,541 110,168

Variant#5 72 1,607 113,533

Variant#6 81 1,666 118,189

Variant#7 65 1,508 105,442

To analyze the source code of given variants, we used Eclipse JDT/DOM
APIs to build abstract syntax tree (AST) that can be queried to extract source
code information. For LSI2 and VSM2, I have implemented them according to the

1 http://argouml-spl.tigris.org/
2 Available at https://code.google.com/p/lsi-vsmodel/
2 Available at https://code.google.com/p/lsi-vsmodel/
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description in section II. For FCA, we depends on Galois sub-hierichal (GSH3)
tool.

4.2 Evaluation metrics

The effectiveness of IR techniques is commonly measured by their precision,
recall and F-measure [6]. For a given query, precision measures the accuracy of
IR results. Precision is the percentage of correctly retrieved links to the total
number of retrieved links. Recall quantifies the number of correctly retrieved
links that are correct. Recall is the percentage of correctly retrieved links to
the total number of relevant links. The F-measure makes a trade-off between
precision and recall so that it gives a high value only in the case that both
recall and precision values are high. All metrics have values in the range [0, 1]. If
precision is equal to 1, it means that all retrieved links are correct, though they
could be correct links that are not retrieved. If recall is equal to 1, it means that
all correct links are retrieved, though they could be retrieved links that are not
correct. Higher precision, recall and F-measure mean better results.

4.3 Performance of our approach

The most important parameter to LSI is the number of chosen term-topics. A
term-topic is a collection of terms that co-occur frequently in the documents of
the corpus. We need enough number of term-topics to capture real term relations.
Too many term-topics lead to associate irrelevant terms and too few term-topics
leads to loose relevant terms. According to Dumais et al. [13] , the number of
term-topics is between 235 and 250 for natural language. For a corpus of source
code files, Poshyvanyk et al. [14] recommended that the number of term-topics is
750. In this work we cannot use a fixed number of term-topics for LSI, because we
have different size of feature and class clusters. Thus, we use a factor K between
0.1 and 0.4 as well as between 0.01 and 0.04 to determine the number of term-
topics. The number of term-topics ( #Topics ) is equals to K×docd, where docd
is document dimensionality of term-by-document matrix that is generated by
LSI.

Table 2 summarizes the average precision, recall and F-measure values for all
variants at different values of K for our approach (FCT) and the conventional
application of LSI (Conv.). As we can see, recall and precision results of FCT are
better than those of the conventional application of LSI. This is attributed to
two main reasons. Firstly, FCT maps small sets of features to small sets of their
respective source code classes by reducing the LSI spaces at feature and source
code levels. As a result, the accuracy (precision) of retrieved links increases be-
cause of reducing the number of false positive links. Secondly, FCT bridges the
abstraction gap between feature and source code levels using the code-topic that
can be a feature or some aspect of a feature. This means that FCT maps two
similar software artifacts (features and code-topics), which leads to increase the

3 Available at https://code.google.com/p/erca/
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Table 2. Average Precision, Recall and F-measure of FCT against the conventional
application of LSI.

Case Study ArgoUML-SPL

Precision Recall F-measure

K FCT Conv. FCT Conv. FCT Conv.

0.01 51% 22% 93% 80% 66% 46%

0.02 51% 22% 93% 71% 66% 46%

0.03 52% 19% 87% 55% 65% 46%

0.04 52% 0% 86% 38% 65% 36%

0.05 53% 0% 73% 25% 61% 33%

Table 3. Average Precision, Recall and F-measure of FCT against FL-PV.

Case Study ArgoUML-SPL

Precision Recall F-measure

K FCT FL-PV FCT FL-PV FCT FL-PV

0.1 75% 64% 43% 27% 54% 38%

0.2 63% 40% 9% 2% 15% 4%

0.3 57% 44% 5% 1% 9% 2%

0.4 62% 50% 4% 0% 8% 0%

0.5 67% 0% 0% 0% 1% 0%

number of retrieved links that are correct. The F-measure results confirm that
FCT gives higher precision and recall compared with the conventional applica-
tion of LSI. This is because when F-measure is high, then precision and recall
are also high (according to the F-measure definition).

In Table 3, we compare results of FCT and the most relevant work on the
subject, called FL-PV [11]. This results represent the average precision, recall
and F-measure values for all variants at different values of K. FL-PV considers
reducing the LSI spaces at feature and source code levels as a factor to improve
LSI results in a collection of software variants. Table 3 shows that FCT out-
performs FL-PV. This is attributed to the fact that FCT not only considers
reducing LSI spaces like FL-PV but also reduces the abstraction gap between
feature and source code levels. This means that reducing LSI space is not the
only important factor to improve LSI results but also reducing the abstraction
gap is another important factor.

5 Conclusions

in this paper, we had presented a new approach which combines FCA with
IR methods to establish traceability links between object-oriented source code
of a collection of product variants and given features of these variants. The
contribution of this work is twofold. Firstly, it explores what software variants
have in common and how they differ to enhance the accuracy of IR results. Then,
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it reduces the abstraction gap between feature and source code levels using “code-
topics” in order to increase the number of retrieved links that are relevant. Our
evaluation on a set of variants of a large-scale system, ArgoUML-SPL modeling
tool, showed that our approach outperforms the conventional application of IR
techniques as well as the most relevant work on the subject.

In the future, we plan to combine textual similarity with structural similarity
(e.g. method call and shared field access relationships) to enhance derived code-
topics.
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