Delivering the Next Generation of Model
Transformation Languages and Tools

Vlad Acretoaie

Dept. of Applied Mathematics and Computer Science
Technical University of Denmark
rvac@dtu.dk

1 Introduction

The research question addressed by this thesis is the definition and imple-
mentation of a model transformation language focused on usability. Work on
this topic has started in January 2013, as a continuation of an M.Sc. thesis on
the topic of model querying [2].

The procedure used to address this question involves the proposal of a new
by-example model transformation language based on the existing Visual Model
Query Language (VMQL). The language will target research gaps identified by a
Structured Literature Review currently in progress. Empirical validation of the
new language’s usability will play a central role in the project.

The expected outcome is a working implementation of the proposed model
transformation language, accompanied by a corpus of empirical evidence to sup-
port its claims of superior usability.

2 Motivation

Creating and maintaining models as part of software development projects is
currently a common practice. Models come into play in various development
activities, such as domain analysis, solution architecture design, or implementa-
tion documentation. The importance of models in the software development
process can vary. While some software development paradigms view models
predominantly as communication artifacts, others such as Model Based and
Model Driven Development (MB/MDD), Domain-Specific Languages (DSLs),
and Business Process Management (BPM) place models in a more central role,
sometimes with the intention of having models completely replace code.
Regardless of the importance they assign to models, all of these software de-
velopment approaches require dedicated tools for model manipulation. An early
attempt to answer this requirement has been proposed in the form of model op-
erators [5] for matching, differencing, merging, splitting, and composing models.
These were all conceived as high-level algebraic operators on data models. A
more practically-oriented solution has been proposed by the MDSD community
in the form of tools for model transformation, querying, constraint verification,
version control and transformation. Out of these, model transformation is widely

2 Vlad Acretoaie

regarded as the cornerstone of MDSD [23], as it facilitates a path from domain
models to executable implementations. This philosophy is endorsed, for example,
in the context of OMG’s Model Driven Architecture (MDA) [20].

With these aspects in mind, we focus on the task of specifying and exe-
cuting model transformations. We intend to address two application areas for
model transformations: MDSD and domain or requirements analysis. A critical
observation we make is that domain and requirements analysis models are often
created by modelers with a non-technical background and limited programming
experience. Such modelers require any model transformation tool to be first and
foremost usable. Starting from previous work on VMQL, a by-example model
query and constraint language [24,25], we are currently developing the Visual
Model Transformation Language (VMTL): a by-example model transformation
language with usability at its core. We believe that our work will contribute to
alleviating the problem of insufficient adoption of models as primary artifacts in
the software development process [22].

3 Model Transformations

A model transformation takes as inputs one or more source models together with
a transformation definition consisting of a set of rules. It produces one or more
target models obtained by applying these rules to the source model(s). Models
may be expressed in one of the standard modeling languages, e.g. UML [21] or
BPMN [19], or in a Domain Specific Language (DSL). The components of a tra-
ditional model transformation are illustrated in Fig. 1, adapted from [7]. Note
that the source and target meta models may or may not coincide (leading to
endogenous or exogenous transformations, respectively [17]), but the transfor-
mation definition must explicitly refer to both meta models.

Refers to |Transformation| Refers to
definition

Source meta model Target meta model

Conforms to Executes Conforms to

Transformation

Source model)
engine

Target model

Fig. 1. Structure of a traditional model transformation

A considerable number of model transformation languages have been pro-
posed so far (see [7,17] for surveys). Some of them, such as the ATLAS Transfor-
mation Language (ATL, [11]), the Epsilon Transformation Language (ETL, [13]),

Delivering the Next Generation of Model Transf. Languages and Tools 3

and Kermeta [18] benefit from relatively mature publicly available implementa-
tions. However, they all share a fundamental characteristic, in that they are
in essence domain specific imperative programming languages with a textual
syntax (though it should be noted that ATL and ETL also support declara-
tive constructs). Furthermore, specifying transformations using these languages
requires extensive knowledge of the modeling language’s meta model.

Some model transformation languages are based on the theoretical founda-
tions of graph transformation [9], including AGG [27], AToM? [8], FUJABA [31],
GrGEN.NET [10], Henshin [3], VIATRA2 [29], and VMTS [16]. These are declar-
ative languages, with various types of syntax: some are purely textual [10, 29],
some introduce their own visual notation [27, 8, 31, 3], while some adapt the mod-
eling language’s abstract syntax visualized as UML Class Diagrams [16]. They
specify transformation rules as pairs of left-hand side (LHS) and right-hand side
(RHS) patterns, where each occurrence of the LHS pattern in the source model is
replaced by the RHS pattern, thus obtaining the target model. From a usability
perspective, specifying declarative patterns implies a softer learning curve than
mastering a full-blown imperative programming language. However, modelers
must still learn the syntax of the transformation language.

Using the concrete syntax of the source and target modeling languages to ex-
press LHS and RHS patterns can overcome this drawback. This avenue has been
explored by the Patterns in Concrete Syntax (PICS, [4]) approach. Although
it affords more compact and (according to the authors) more readable trans-
formation specifications, PICS is only exemplified for refactoring UML Class
Diagrams, and no tool implementation is mentioned. A similar approach orig-
inates in the Aspect Oriented Modeling (AOM) field, where MATA [32] is an
aspect composition language based on graph transformation rules expressed in
concrete syntax. MATA is also limited in scope, directly addressing only UML
Class Diagrams, Sequence Diagrams, and State Machine Diagrams.

Recently, several approaches adopting the Model Transformation By-Example
(MTBE, [28]) paradigm have been proposed [14]. Like PICS and MATA, these
approaches use the concrete syntax of the source and target models to define
transformation rules, and thus propose a change to the overall model transfor-
mation mechanism (see Fig. 2). Namely, the transformation definition directly
references the source and target models. Modelers define transformations by
specifying several source and target model pairs, from which the underlying
transformation engine deduces correspondences between source and target model
elements. These correspondences are then formalized as rules in an established
model transformation language such as ATL. In correspondence-based MTBE ap-
proaches [15, 30], modelers explicitly specify the correspondences between source
and target model elements via graphical model annotations. In demonstration-
based MTBE approaches [6,26], modelers exemplify the transformation rules
by performing edit operations on the source model. By recording these opera-
tions or mapping model element IDs, the transformation engine deduces gen-
eralized transformation rules. In both correspondence and demonstration-based
approaches, modelers can manually edit the generated transformation rules.

4 Vlad Acretoaie

Transformation

Source meta model - Target meta model
definition

Conforms to Refers to Executes Refers to Conforms to

Transformation

Source model .
engine

Target model

Fig. 2. Structure of a model transformation by-example

4 Outline of the Proposed Approach

Considering the overview of model transformation approaches presented in Sec-
tion 3, we conclude that the recent MTBE direction presents considerable explo-
ration opportunities. Furthermore, we envision our solution taking the demonstration-
based direction, since it is suited to the vision and existing constructs of VMQL.

To exemplify the usage of VMTL, consider the Pull Up Attribute refactor-
ing (i.e. endogenous transformation) illustrated in Figure 3 on a simple model
depicting networking protocols. To trigger this refactoring, a model must satisfy
the following preconditions:

— Prel: A superclass must have at least two distinct direct subclasses.

— Pre2: The subclasses must have one or more attributes sharing the same
name, type, and visibility.

— Pre8: The superclass must not have an attribute with the same name as the
one shared by the subclasses.

After the Pull Up Attribute refactoring is applied, the following postcondi-
tions must hold true:

— Post1: The common attribute is removed from the subclasses.

— Post2: The common attribute is added to the superclass.

— Post3: If the common attribute’s visibility in the subclasses was private,
its visibility is modified to protected in the superclass (so that it remains
accessible to the subclasses). Otherwise, the attribute maintains its visibility.

All preconditions hold true for the source model in Figure 3a. Applying the
described Pull Up Attribute refactoring to this model generates the target model
in Figure 3b, for which all postconditions hold true.

A modeler would specify this refactoring using VMTL as shown in Figure 4.
The refactoring definition contains two VMTL rules, each consisting of a source
pattern and a target pattern. The semantics of applying VMTL rules is straight
forward: each instances of a source pattern matched in the source model is

Delivering the Next Generation of Model Transf. Languages and Tools 5

package Source Model[Protocolsu package Target Model Protocolsﬂ
Connection Connection
+id : Integer +id : Integer
+timeout
? #latency
HTTPConnection SPDYConnection
+timeout : Integer +timeout : Integer ‘ HTTPConnection ‘ SPDYConnection
-latency : Integer +encryptionAlgorithm : String " : A
-latency : Integer +encryptionAlgorithm : String
(a) Source model (b) Target model

Fig. 3. The Pull Up Attribute refactoring applied to a networking protocols scenario

replaced by an instance of the corresponding target pattern (considerations such
as rule scheduling and rule application conditions are deferred for now). Rule 1
handles all scenarios except those in which the subclasses’ common attribute is
private, which are handled by Rule 2. We provide an explanation of Rule 1, whose
source and target patterns are shown in Figure 4a and Figure 4b, respectively.

The source pattern in Figure 4a captures the listed preconditions. The pat-
tern is itself a valid UML Class Diagram annotated with <<vmt1>> stereotyped
comments. Each comment is anchored to a model element and contains a con-
junction of VMTL constraints (the conjunction operator is a comma). Con-
straints alter the way in which patterns are matched in models. For instance,
the distinct constraint anchored to classes $Subl and $Sub2 states that these
classes will only be matched to distinct classes of the source model - therefore
satisfying precondition Prel. Strings starting with the $ character are VMTL
variables, and are bound to String values in the model at execution time. The
not, mattr visibility = * constraint anchored to the $attr attribute of the
$Super class states that, in order for the pattern to match, an attribute with this
name must not exist in the matched class, regardless of its visibility (since an
attribute with the same name exists in the two subclasses). Thus, precondition
Pre3 is satisfied. Finally, precondition Pre2 is satisfied by the $attr and $type
variables appearing in both subclasses (meaning that they must be bound to the
same source model elements), in conjunction with the mattr visibility <>
private, mattr visibility = $V constraint. This constraint states that the
visibility of the attributes it is anchored to must not be private, and also stores
the value of the visibility meta attribute in the variable $V. The same variable
appears in the target pattern in Figure 4b as part of the mattr visibility =
$V constraint, which assigns the value of the variable $V to the visibility meta
attribute of attribute $attr. This means that the visibility of the pulled up at-
tribute must not change. Note that all other variables appearing in the target
pattern have also appeared in the source pattern, meaning that they are bound
to the same values.

Since the transformation specification in Figure 4 introduces no new visual
notation elements compared to the notation of the host modeling language (in

6 Vlad Acretoaie

package Source Pattern 1[[Source Pattern 1U package Target Pattern 1[[Target Pattern 1U

$Super
Ay not, mattr visibility = *
4 «mtl»
mattr visibility = $V/

+$attr : $type S distinct +$attr : Stype <
N =

P } $Sub1 i } $sub2 ‘\
«vmtl»
mattr visibility <> private,
mattr visibility = $V
(a) Rule 1: source pattern (b) Rule 1: target pattern
package Source Pattern 2[Source Pattern ZU package Target Pattern 2[Targe| Pattern 2y
$Super
~ not, mattr visibility = *
[ssumt | [ssub2 |
‘-$attr : Stype ‘ ‘-$anr : $type l ‘ $Sub1 ‘ ‘ $Sub2 ‘
N p \ \
«vmtl»
distinct
(c¢) Rule 2: source pattern (d) Rule 2: target pattern

Fig. 4. VMTL rules describing the Pull Up Attribute refactoring

this case UML Class Diagrams), it can arguably be understood and created
by any modeler. Furthermore, the expressiveness of VMTL is likely to exceed
that of existing demonstration-based approaches, since none of these permits
annotations to the source and target example models.

Figure 5 presents an overview of the proposed transformation process. A
transformation takes as input a set of source and target patterns, where each
source pattern has a corresponding target pattern. The patterns are processed
by the transformation generation engine, which produces a transformation def-
inition in a Prolog-based internal format. The purpose of this internal format
is to enable the application of VMTL to several modeling languages, including
but not limited to UML and BPMN. Apart from the rules themselves, the trans-
formation definition stores additional information such as the rule scheduling
policy. This definition is provided to a transformation execution engine, which
also takes as input the source model (i.e. the model onto which the transfor-
mation definition will be applied). After converting the source model into a
Prolog-based representation, the transformation execution engine produces the
target model by matching instances of source patterns in the source model and
replacing them with the corresponding instances of target patterns.

Delivering the Next Generation of Model Transf. Languages and Tools 7

Source model

Source patterns Transformation .)
generation engine Tfansformathn
execution engine

Transformation definition

@J

1

Target patterns

Target model

Fig. 5. An overview of the VMTL transformation process

5 Current Status and Next Steps

5.1 Current Status

As a starting point for the development of VMTL, we are in the process of
conducting a Structured Literature Review (SLR) of the field of model transfor-
mation languages. Compared to a regular literature review, an SLR brings the
additional benefit of a rigorous and extensively documented review process, mak-
ing the results repeatable and thus increasing confidence in their validity [12].
The impetus behind this effort is twofold. First, we wish to provide a clear
motivation for the direction chosen for VMTL. Second, the most recent compre-
hensive reviews of model transformation approaches date back to 2006 [7,17],
and were not performed under the rigorousness of an SLR.

A second line of current work is motivated by the desire to make VMTL
applicable across modeling languages (i.e. not only to UML). To this extent, we
are currently exploring the possibility of using VMQL as a query language for
BPMN models. As VMQL lies at the basis of our future transformation language,
this will provide a readily available path to applying VMTL to BPMN and other
modeling languages.

5.2 Next Steps

In terms of future work required to bring the VMTL vision to fruition, we envi-
sion the following major development stages:

8

Vlad Acretoaie

1. Language definition. We will extend VMQL with transformation-specific lan-

guage constructs. As guidance for this process, we will maintain a set of
transformation scenarios which the new language should be able to address.

. Implementation. We will provide an implementation for VMTL. The imple-

mentation should provide support for usability-enhancing features such as
stepwise execution and rollback of transformations, and should be integrated
into an industrial strength modeling environment. We expect the implemen-
tation to be based on Prolog, similar to the implementation of VMQL [1].

. Validation. We will determine via empirical studies if the usability advantage

VMQL has demonstrated over OCL carries over to VMTL in relation to more
established textual and visual model transformation languages.

5.3 Expected Challenges

Based on our experience with implementing VMQL and on the findings of our
ongoing SLR effort, we expect to encounter the following challenges:

1. Ezogenous transformations support. We expect to encounter some difficul-

ties in handling exogenous transformations with a demonstration-based ap-
proach. The only existing solution addressing this challenge [15] relies on
a state-based comparison between contert and extended source and target
models, respectively. The limited work in this area suggests that supporting
exogenous transformations at the transformation language level may be a
considerably more difficult task in the by-demonstration context.

. Necessity for an internal representation of transformation rules. Existing

MTBE approaches work by generating a transformation specification from
the provided examples. This specification is internally represented using a
traditional textual model transformation language, such as ATL. As a first
step, we intend to adopt a simplified approach: recursively replacing in-
stances of each source pattern with instances of the corresponding target
pattern in the source model. This approach will be implemented by rep-
resenting both patterns and source/target models as Prolog fact databases.
Executing a transformation will then reduce to adding or removing facts from
the source model to obtain the target model. It remains to be seen whether
this execution model will suffice, or a more elaborate internal representation
of transformation rules will be required. It may be the case that the trans-
formation generation engine and the transformation definition mentioned in
Figure 5 can be omitted. In any event, users will not be required to interact
with, or even be aware of, the Prolog-based internal model representation.

. Ezecution times for large models. Based on similar setbacks encountered with

our existing VMQL implementation, we expect efficiency of the transforma-
tion engine to be a critical factor when dealing with large models. Overcom-
ing such setbacks will largely rely on producing a Prolog implementation of
an efficient model matching algorithm.

Delivering the Next Generation of Model Transf. Languages and Tools 9

6 Conclusion

We have presented our roadmap to delivering a next generation model transfor-
mation language - VMTL. An ongoing survey of existing model transformation
languages has suggested that usability is an often overlooked aspect in this area,
which has prompted us to pursue a by-example approach to model transforma-
tions. The approach is based on our experience with by-example model queries
and constraints. In this context, we have exemplified a usage scenario for VMTL.
After outlining the planned implementation architecture, we have specified cur-
rent work areas and future steps to be taken. Finally, we have listed what we
believe to be the most important challenges lying ahead.

References

1. Acretoaie, V., Storrle, H.: MQ-2: A Tool for Prolog-based Model Querying. In: Work-
shop Proc. 8th European Conference on Modelling Foundations and Applications
(ECMFA’12), pp. 328-331, 2012.

2. Acretoaie, V.: An implementation of VMQL. M.Sc. thesis, Technical University of
Denmark, 2012.

3. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Proc. 13th Inter-
national Conference on Model Driven Engineering Languages and Systems (MOD-
ELS’10), pp. 121-135. Springer (2008).

4. Baar, T., Whittle, J.: On the Usage of Concrete Syntax in Model Transformation
Rules. In: Proc. 6th International Andrei Ershov Memorial Conference (PICS’06),
pp. 84-97. Springer (2007).

5. Bernstein, P., Halevy, A., Pottinger, R.: A Vision for Management of Complex
Models. In: SIGMOD Record 29(4), 55-63 (2000).

6. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Rets-
chitzegger, W., Schwinger, W.: An Example Is Worth a Thousand Words: Com-
posite Operation Modeling By-Example. In: Proc. 12th International Conference
on Model Driven Engineering Languages and Systems (MODELS’09), pp. 271-285.
Springer (2009).

7. Czarnecki, C., Helsen, S.: Feature-based survey of model transformation approaches.
In: IBM Syst. J. 45(3), 621-645 (2006).

8. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-
modelling. In: Proc. 5th International Conference FASE 2002, pp. 174—188. Springer
(2002).

9. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg G. (eds.): Handbook on Graph
Grammars and Computing by Graph Transformation. In: Applications, Languages
and Tools, vol. 2. World Scientific (1999).

10. Gelhausen, T., Derre, B., Geiss, R.: Customizing GrGen.NET for Model Transfor-
mation. In: Proc. 3rd International Workshop on Graph and Model Transformation
(GraMoT’08). 2008.

11. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I: ATL: A model transformation tool.
In: Science of Computer Programming 72, 31-39 (2008).

12. Kitchenham, B.: Procedures for Performing Systematic Reviews. Joint Technical
Report, Keele University / NICTA, 2004.

10 Vlad Acretoaie

13. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Transformation Language.
In: Proc. 1st International Conference on Model Transformation (ICMT’08), pp.
46-60. Springer (2008).

14. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
transformation by-example: a survey of the first wave. In: Conceptual Modelling
and Its Theoretical Foundations, 197-215 (2012).

15. Langer, P., Wimmer, M., Kappel, G.: Model-to-Model Transformations By
Demonstration. In: Proc. 3rd International Conference on Model Transformation
(ICMT’10), pp. 153-167. Springer (2010).

16. Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: A Systematic Approach
to Metamodeling Environments and Model Transformation Systems in VMTS. In:
Electron. Theor. Comp. Sci. 127(1), 6575 (2005).

17. Mens, T., Van Gorp, P.: A Taxonomy of Model Transformation. In: Electronic
Notes in Theoretical Computer Science (ENTCS) 152, 125-142 (2006).

18. Moha, N., Sen, S., Faucher, C., Barais, O., Jézéquel, J.M.: Evaluation of Kermeta
for solving graph-based problems. In: Int. J. Software Tools for Technology Transfer
(STTT) 12(3-4), 273-285 (2010).

19. The Object Management Group (OMG): Business Process Model and Notation
(BPMN). Version 2.0, http://www.omg.org/spec/BPMN/2.0/. OMG (2011).

20. The Object Management Group (OMG): OMG MDA Guide. Version 1.0.1,
http://www.omg.org/cgi-bin/doc?omg/03-06-01. OMG (2003).

21. The Object Management Group (OMG): Unified Modeling Language. Version
2.4.1, http://www.omg.org/spec/UML/2.4.1/. OMG (2011).

22. Selic, B.: What will it take? A view on adoption of model-based methods in prac-
tice. In: J. Software and Systems Modeling 11(4), 513-526 (2012).

23. Sendall, S., Kozaczynski, W.: Model Transformation - The Heart and Soul of
Model-Driven Software Development. In: IEEE Software 20(5), 42-45 (2003).

24. Storrle, H.: VMQL: A Visual Language for Ad-Hoc Model Querying. In: J. Visual
Languages and Computing 22(1), 3-29 (2011).

25. Storrle, H.: VMQL: Expressing Model Constraints Visually with VMQL. In: Proc.
IEEE Symp. Visual Languages and Human-Centric Computing (VL/HCC’11), pp.
195-202. IEEE Computer Society (2011).

26. Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. In: Proc.
12th International Conference on Model Driven Engineering Languages and Systems
(MODELS’09), pp. 712-726. Springer (2009).

27. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Proc. Second International Workshop AGTIVE 2003, pp.
446-453. Springer (2004).

28. Varré, D.: Model Transformation by Example. In: Proc. 9th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS’06), pp.
410-424. Springer (2006).

29. Varré, D.: The model transformation language of the VIATRA2 framework. In:
Sci. Comp. Prog. 68(3), 187-2007 (2007).

30. Varré, D., Balogh, Z.: Model transformation by example using inductive logic pro-
gramming. In: J. Software and Systems Modeling 8(3), 347-364 (2009).

31. Wagner, R.: Developing Model Transformations with Fujaba. In: Proc. 4th Inter-
national Fujaba Days, pp. 79-82. University of Paderborn (2006).

32. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Aratjo, J.: MATA: A Uni-
fied Approach for Composing UML Aspect Models Based on Graph Transformation.
In: Transactions on Aspect-Oriented Software Development VI - Special Issue on
Aspects and Model-Driven Engineering, pp. 191-237. Springer (2009).

